期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
低信噪比下多目标调制谱轴频自动检测算法
1
作者 马凯 陈喆 +1 位作者 王易川 程玉胜 《振动与冲击》 EI CSCD 北大核心 2022年第24期19-26,共8页
针对低信噪比条件下,水声目标辐射噪声中多目标调制谱轴频检测较困难的问题,提出一种联合蚁群算法与谐波库匹配算法的多目标调制谱轴频检测算法。算法利用排序截短法剔除调制谱中的趋势项,并提出一种基于蚁群算法的线谱提取算法,用于提... 针对低信噪比条件下,水声目标辐射噪声中多目标调制谱轴频检测较困难的问题,提出一种联合蚁群算法与谐波库匹配算法的多目标调制谱轴频检测算法。算法利用排序截短法剔除调制谱中的趋势项,并提出一种基于蚁群算法的线谱提取算法,用于提取低信噪比下调制谱中的线谱,该算法根据线谱特征建立一种新的代价函数来替代传统蚁群算法中距离这一寻优标准,可实现低信噪比下线谱地自动提取;最后根据所提线谱建立谐波库,通过与谐波库匹配实现轴频地自动提取。仿真和海试数据验证表明,该算法在低信噪比下可以较好地提取线谱,并自动提取多目标的轴频,效果较好。 展开更多
关键词 低信噪比 线谱提取 轴频检测 多目标 调制谱
下载PDF
常规声压与声矢量信号非整数维谱性能比较研究 被引量:1
2
作者 李思纯 杨德森 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2007年第5期510-514,共5页
为解决高阶谱算法复杂、计算量大和声压信号有限的抗干扰能力问题,提出了声矢量信号非整数维谱分析方法.利用可抑制高斯和对称分布噪声的高阶累积量非整数维谱对目标辐射噪声声压信号和声矢量信号进行了特征分析.分别采用功率谱图和三... 为解决高阶谱算法复杂、计算量大和声压信号有限的抗干扰能力问题,提出了声矢量信号非整数维谱分析方法.利用可抑制高斯和对称分布噪声的高阶累积量非整数维谱对目标辐射噪声声压信号和声矢量信号进行了特征分析.分别采用功率谱图和三维动态谱图方法对常规声压和声矢量信号非整数维谱性能进行了直观比对.为获得定量分析结果,分别对不同背景噪声环境条件下,不同输入信噪比的常规声压与声矢量信号非整数维谱的轴频PBR及PD进行了详细计算.结果表明,声矢量信号非整数维谱特征提取与轴频检测能力优于常规声压信号,为高阶统计量应用于声矢量信号处理提供了一条途径. 展开更多
关键词 声矢量信号 非整数维谱 特征提取 DEMON谱 轴频检测
下载PDF
Demodulation spectrum analysis for multi-fault diagnosis of rolling bearing via chirplet path pursuit 被引量:1
3
作者 LIU Dong-dong CHENG Wei-dong WEN Wei-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2418-2431,共14页
The vibration signals of multi-fault rolling bearings under nonstationary conditions are characterized by intricate modulation features,making it difficult to identify the fault characteristic frequency.To remove the ... The vibration signals of multi-fault rolling bearings under nonstationary conditions are characterized by intricate modulation features,making it difficult to identify the fault characteristic frequency.To remove the time-varying behavior caused by speed fluctuation,the phase function of target component is necessary.However,the frequency components induced by different faults interfere with each other.More importantly,the complex sideband clusters around the characteristic frequency further hinder the spectrum interpretation.As such,we propose a demodulation spectrum analysis method for multi-fault bearing detection via chirplet path pursuit.First,the envelope signal is obtained by applying Hilbert transform to the raw signal.Second,the characteristic frequency is extracted via chirplet path pursuit,and the other underlying components are calculated by the characteristic coefficient.Then,the energy factors of all components are determined according to the time-varying behavior of instantaneous frequency.Next,the final demodulated signal is obtained by iteratively applying generalized demodulation with tunable E-factor and then the band pass filter is designed to separate the demodulated component.Finally,the fault pattern can be identified by matching the prominent peaks in the demodulation spectrum with the theoretical characteristic frequencies.The method is validated by simulated and experimental signals. 展开更多
关键词 rolling bearing demodulation spectrum multi-fault detection NONSTATIONARY chirplet path pursuit
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部