期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度LightGBM集成学习模型的谷歌商店顾客购买力预测
被引量:
14
1
作者
叶志宇
冯爱民
高航
《计算机应用》
CSCD
北大核心
2019年第12期3434-3439,共6页
针对轻量化梯度促进机(LightGBM)等集成学习模型只对数据信息进行一次挖掘,无法自动地细化数据挖掘粒度或通过深入挖掘得到更多的数据中潜在内部关联信息的问题,提出了深度LightGBM集成学习模型,该模型由滑动窗口和加深两部分组成。首先...
针对轻量化梯度促进机(LightGBM)等集成学习模型只对数据信息进行一次挖掘,无法自动地细化数据挖掘粒度或通过深入挖掘得到更多的数据中潜在内部关联信息的问题,提出了深度LightGBM集成学习模型,该模型由滑动窗口和加深两部分组成。首先,通过滑动窗口使得集成学习模型能够自动地细化数据挖掘粒度,从而更加深入地挖掘数据中潜在的内部关联信息,同时赋予模型一定的表示学习能力。然后,基于滑动窗口,用加深步骤进一步地提升模型的表示学习能力。最后,结合特征工程对数据集进行处理。在谷歌商店数据集上进行的实验结果表明,所提深度集成学习模型相较原始集成学习模型的预测精度高出6.16个百分点。所提方法能够自动地细化数据挖掘粒度,从而获取更多数据集中的潜在信息,并且深度LightGBM集成学习模型与传统深度神经网络相比是非神经网络的深度模型,参数更少,可解释性更强。
展开更多
关键词
机
器学习
轻量化梯度促进机
数据挖掘
深度模型
集成学习
特征工程
下载PDF
职称材料
题名
基于深度LightGBM集成学习模型的谷歌商店顾客购买力预测
被引量:
14
1
作者
叶志宇
冯爱民
高航
机构
南京航空航天大学计算机科学与技术学院
出处
《计算机应用》
CSCD
北大核心
2019年第12期3434-3439,共6页
文摘
针对轻量化梯度促进机(LightGBM)等集成学习模型只对数据信息进行一次挖掘,无法自动地细化数据挖掘粒度或通过深入挖掘得到更多的数据中潜在内部关联信息的问题,提出了深度LightGBM集成学习模型,该模型由滑动窗口和加深两部分组成。首先,通过滑动窗口使得集成学习模型能够自动地细化数据挖掘粒度,从而更加深入地挖掘数据中潜在的内部关联信息,同时赋予模型一定的表示学习能力。然后,基于滑动窗口,用加深步骤进一步地提升模型的表示学习能力。最后,结合特征工程对数据集进行处理。在谷歌商店数据集上进行的实验结果表明,所提深度集成学习模型相较原始集成学习模型的预测精度高出6.16个百分点。所提方法能够自动地细化数据挖掘粒度,从而获取更多数据集中的潜在信息,并且深度LightGBM集成学习模型与传统深度神经网络相比是非神经网络的深度模型,参数更少,可解释性更强。
关键词
机
器学习
轻量化梯度促进机
数据挖掘
深度模型
集成学习
特征工程
Keywords
machine learning
Light Gradient Boosting Machine(LightGBM)
data mining
deep model
ensemble learning
feature engineering
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度LightGBM集成学习模型的谷歌商店顾客购买力预测
叶志宇
冯爱民
高航
《计算机应用》
CSCD
北大核心
2019
14
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部