由于背景环境复杂,检测物体易受部分遮挡、天气以及光线变化等因素的影响,传统目标检测方法存在提取特征难、检测准确率低、检测耗时长等缺陷.为了改善传统目标检测方法存在的缺陷,实现快速准确的目标检测,提出了一种基于快速区域卷积...由于背景环境复杂,检测物体易受部分遮挡、天气以及光线变化等因素的影响,传统目标检测方法存在提取特征难、检测准确率低、检测耗时长等缺陷.为了改善传统目标检测方法存在的缺陷,实现快速准确的目标检测,提出了一种基于快速区域卷积神经网络(faster regions with convolutional neural network,Faster-RCNN)算法的轻量化改进方法,即针对算法Inception-V2特征提取网络进行轻量化改进,并以带泄露线性整流(leaky rectified linear unit,Leaky ReLU)作为激活函数,解决使用线性整流(rectified linear unit,ReLU)激活函数存在的神经元输入为负数时输出为0的问题.基于上述改进方法,选择沙滩废弃物的检测为案例以验证方法的有效性,并且结合不同特征提取网络在检测沙滩废弃物时的表现,对比了SSD(single shot multibox detector)与Faster-RCNN算法.实验结果表明:所提改进算法在实际检测中有较好的综合性能,且相比原算法Faster-RCNN_Inception-V2,轻量化改进后的Inception-V2特征提取网络卷积计算量减少51.8%,模型训练耗时缩短了9.1%,检测耗时减少了10.9%,各类别AP的平均值(mean average precision,mAP)增加了1.02%,可见所提的改进方法能够有效提高目标检测的准确率,减少检测耗时,并在沙滩废弃物检测上得到成功应用,为海滨城市的沙滩清理维护提供了技术支持与保障.展开更多
Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for...Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.展开更多
文摘由于背景环境复杂,检测物体易受部分遮挡、天气以及光线变化等因素的影响,传统目标检测方法存在提取特征难、检测准确率低、检测耗时长等缺陷.为了改善传统目标检测方法存在的缺陷,实现快速准确的目标检测,提出了一种基于快速区域卷积神经网络(faster regions with convolutional neural network,Faster-RCNN)算法的轻量化改进方法,即针对算法Inception-V2特征提取网络进行轻量化改进,并以带泄露线性整流(leaky rectified linear unit,Leaky ReLU)作为激活函数,解决使用线性整流(rectified linear unit,ReLU)激活函数存在的神经元输入为负数时输出为0的问题.基于上述改进方法,选择沙滩废弃物的检测为案例以验证方法的有效性,并且结合不同特征提取网络在检测沙滩废弃物时的表现,对比了SSD(single shot multibox detector)与Faster-RCNN算法.实验结果表明:所提改进算法在实际检测中有较好的综合性能,且相比原算法Faster-RCNN_Inception-V2,轻量化改进后的Inception-V2特征提取网络卷积计算量减少51.8%,模型训练耗时缩短了9.1%,检测耗时减少了10.9%,各类别AP的平均值(mean average precision,mAP)增加了1.02%,可见所提的改进方法能够有效提高目标检测的准确率,减少检测耗时,并在沙滩废弃物检测上得到成功应用,为海滨城市的沙滩清理维护提供了技术支持与保障.
基金supported in part by the National Key Research and Development Program of China(No. 2018YFC0309104)the Construction System Science and Technology Project of Jiangsu Province (No.2021JH03)。
文摘Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.