期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
面向空间认知通信的轻量化网络自动调制分类方法
1
作者 崔天舒 王栋 黄振 《系统工程与电子技术》 EI CSCD 北大核心 2023年第7期2220-2226,共7页
当前自动调制分类采用的深度学习模型存在参数量与计算量大的问题。根据连续采样同相正交信号特点,提出了一种轻量且高效的深度网络结构。通过构造方向滤波器,首先提取相位特征,再提取时域特征,最后利用通道特征均值分类。采用通信信号... 当前自动调制分类采用的深度学习模型存在参数量与计算量大的问题。根据连续采样同相正交信号特点,提出了一种轻量且高效的深度网络结构。通过构造方向滤波器,首先提取相位特征,再提取时域特征,最后利用通道特征均值分类。采用通信信号分类数据集进行验证,当信噪比大于0 dB时,准确率超过60%,信噪比大于等于10 dB时,准确率超过90%;与主流深度模型相比,在达到相同准确率时,仅用20%左右的模型参数和50%左右的推理时间,更适合被应用于空间认知通信系统。 展开更多
关键词 自动调制分类 深度学习 轻量化网络结构
下载PDF
基于改进YOLOv8-Pose的码垛快速识别与抓取点检测
2
作者 郭忠峰 王健鹏 +1 位作者 杨钧麟 杨春源 《组合机床与自动化加工技术》 北大核心 2024年第11期125-129,共5页
针对码垛场景中在仓库内对米袋和面袋的识别与抓取点检测的任务,提出了一种基于改进的YOLOv8-Pose的轻量化快速检测算法模型。其基于YOLOv8-Pose,使用若干个ShuffleNetv2模块取代原Darknet主干网络,降低模型大小;添加SimAM注意力机制,... 针对码垛场景中在仓库内对米袋和面袋的识别与抓取点检测的任务,提出了一种基于改进的YOLOv8-Pose的轻量化快速检测算法模型。其基于YOLOv8-Pose,使用若干个ShuffleNetv2模块取代原Darknet主干网络,降低模型大小;添加SimAM注意力机制,提升目标特征提取能力。通过对比实验表明,该模型在不牺牲准确性的前提下可提升模型的识别速度。模型在自制数据集中的平均精度达到了93.7%,检测速度达到了62 fps,优于常见模型。证明该模型能够实现复杂场景下的抓取点识别,且该轻量化模型能够适用于嵌入式硬件,降低设备成本。 展开更多
关键词 抓取点检测 YOLOv8-Pose ShuffleNetv2 轻量化网络结构
下载PDF
基于卷积神经网络的遥感影像建筑物提取方法综述 被引量:1
3
作者 杨明旺 赵丽科 +2 位作者 叶林峰 蒋华伟 杨震 《地球信息科学学报》 EI CSCD 北大核心 2024年第6期1500-1516,共17页
建筑物提取作为遥感影像处理领域备受关注的研究方向之一,对于城市规划、灾害管理、智慧城市建设等方面具有重要意义。近年来,随着遥感技术的不断突破和深度学习算法的迅速发展,卷积神经网络凭借强大的特征提取能力成为从遥感影像中提... 建筑物提取作为遥感影像处理领域备受关注的研究方向之一,对于城市规划、灾害管理、智慧城市建设等方面具有重要意义。近年来,随着遥感技术的不断突破和深度学习算法的迅速发展,卷积神经网络凭借强大的特征提取能力成为从遥感影像中提取建筑物的新兴解决方案。本文对基于卷积神经网络的建筑物提取方法进行系统总结,并将相关文献的方法针对模型结构、多尺度特征差异性、边界信息缺失以及模型复杂度的优化策略进行归纳分析。随后,我们阐述了典型的建筑物数据集以及当前数据集存在的问题,并根据数据集上的实验结果对相关方法的精度及参数量进行详细分析,旨在帮助读者更好地理解各种方法的性能和适用范围。最后,立足于领域的研究现状,面向人工智能高质量发展的新时代,从Transformer与CNN的结合、深度学习与强化学习的结合、跨模态数据融合、无监督或半监督学习方法、基于大规模遥感模型的实时提取、建筑物实例分割和建筑物轮廓矢量提取等方面对建筑物提取的未来研究方向进行了展望。 展开更多
关键词 卷积神经网络 遥感影像 建筑物提取 深度学习 非对称网络结构 多尺度特征融合 边界优化 轻量化网络结构
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部