期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于两阶段动态兴趣识别的购买行为预测模型
1
作者 张春雪 仇丽青 +1 位作者 孙承爱 荆彩霞 《计算机应用》 CSCD 北大核心 2024年第8期2365-2371,共7页
在线购买预测旨在预测用户的购买行为,为购物网站带来可观的商业价值。针对传统模型学习用户历史行为中隐含的兴趣偏好不准确的问题,提出基于两阶段动态兴趣识别的购买行为预测模型,以预测用户购买商品的概率。首先,模型的第一阶段构建... 在线购买预测旨在预测用户的购买行为,为购物网站带来可观的商业价值。针对传统模型学习用户历史行为中隐含的兴趣偏好不准确的问题,提出基于两阶段动态兴趣识别的购买行为预测模型,以预测用户购买商品的概率。首先,模型的第一阶段构建用户-商品的点击频率图,并利用轻量图卷积网络(LightGCN)学习图的上下文特征作为用户的静态兴趣表征;其次,第二阶段采用带有注意力机制的双向门控递归单元(Bi-GRU)探索用户偏好的转化过程;最后,针对潜在的高维特征,建立一个融合动态兴趣和隐含特征的购买预测模型。在2个真实电子商务数据集上的实验结果表明,所提模型与图卷积网络(GCN)模型相比,准确率至少提升0.3个百分点,F1分数至少提升了2.05个百分点。 展开更多
关键词 电子商务 在线购买预测 轻量图卷积神经网络 双向门控递归单元 高阶兴趣上下文特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部