期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于轻量型卷积神经网络的交通标志识别方法 被引量:3
1
作者 程越 刘志刚 《计算机系统应用》 2020年第2期198-204,共7页
交通标志识别设备的功耗和硬件性能较低,而现有卷积神经网络模型内存占用高、训练速度慢、计算开销大,无法应用于识别设备.针对此问题,为降低模型存储,提升训练速度,引入深度可分离卷积和混洗分组卷积并与极限学习机相结合,提出两种轻... 交通标志识别设备的功耗和硬件性能较低,而现有卷积神经网络模型内存占用高、训练速度慢、计算开销大,无法应用于识别设备.针对此问题,为降低模型存储,提升训练速度,引入深度可分离卷积和混洗分组卷积并与极限学习机相结合,提出两种轻量型卷积神经网络模型:DSC-ELM模型和SGC-ELM模型.模型使用轻量化卷积神经网络提取特征后,将特征送入极限学习机进行分类,解决了卷积神经网络全连接层参数训练慢的问题.新模型结合了轻量型卷积神经网络模型内存占用低、提取特征质量好以及ELM的泛化性好、训练速度快的优点.实验结果表明.与其他模型相比,该混合模型能够更加快速准确地完成交通标志识别任务. 展开更多
关键词 轻量型卷积神经网络 交通标志识别 VGG16网络 极限学习机
下载PDF
改进卷积神经网络的单词级语音活体检测方法
2
作者 李志刚 宋晓婷 +1 位作者 郭琪美 孙晓川 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第1期39-48,共10页
为提高智能家居语音验证系统中重放语音的检测精度,提出了一种新型的单词级语音活体检测方法,采用轻量型卷积全局门控循环神经网络(light convolutional global gate recurrent neural network, LC-GGRNN)作为深度特征提取器,由支持向量... 为提高智能家居语音验证系统中重放语音的检测精度,提出了一种新型的单词级语音活体检测方法,采用轻量型卷积全局门控循环神经网络(light convolutional global gate recurrent neural network, LC-GGRNN)作为深度特征提取器,由支持向量机(support vector machine, SVM)执行真实和重放语音的分类,即LC-GGRNN-SVM框架。LC-GGRNN是在轻量型卷积神经网络的基础上引入了全局注意力机制和门控循环单元,前者关注提取特征的通道信息、空间信息以及通道与空间相互作用的信息,后者学习深度特征的长期相关性。提取POCO(pop noise corpus)数据集中音频文件的3种声学特征分别用于模型训练、验证和测试。结果表明,提取的伽马通频率倒谱系数声学特征在所提方法上检测效果最好,准确率、等错误率分别为85.72%、14.28%,错误接受率和错误拒绝率之和为28.59%,所提方法在POCO上的语音活体检测还具有性别依赖性。此外,所提方法对句子级重放语音检测也具有较好的泛化性。 展开更多
关键词 语音活体检测 声学特征 气爆杂音 轻量型卷积神经网络 支持向机(SVM) POCO数据集
下载PDF
基于轻量型卷积视觉Transformer的锑浮选工况识别 被引量:1
3
作者 陈奕霏 蔡耀仪 李诗文 《激光与光电子学进展》 CSCD 北大核心 2023年第6期249-261,共13页
依靠人工观测锑浮选泡沫特征进行锑浮选工况识别,主观性强、误差大,严重制约浮选性能.基于计算机视觉的识别方法成本低、效果好.针对以上问题,提出一种基于轻量型卷积视觉Transformer(L-CVT)的锑浮选工况识别方法.通过Transformer层的... 依靠人工观测锑浮选泡沫特征进行锑浮选工况识别,主观性强、误差大,严重制约浮选性能.基于计算机视觉的识别方法成本低、效果好.针对以上问题,提出一种基于轻量型卷积视觉Transformer(L-CVT)的锑浮选工况识别方法.通过Transformer层的堆叠代替标准卷积中矩阵乘法来学习全局信息,将卷积中的局部建模更替为全局建模,同时引入轻量型神经网络MobileNetv2中的子模块,减少计算成本.所提方法解决了卷积神经网络(CNN)忽略浮选图像内部长距离依赖关系的问题,同时也弥补了视觉Transformer(VIT)缺乏归纳偏置的缺点.实验结果表明,基于所提方法的锑浮选工况识别准确率最高可达93.56%,明显高于VGG16、ResNet18、AlexNet等主流网络,为锑浮选数据在工况识别领域提供了重要参考. 展开更多
关键词 机器视觉 锑浮选 工况识别 计算机视觉 轻量型卷积神经网络 视觉Transformer
原文传递
基于NSGA-Ⅱ的自适应多尺度特征通道分组优化算法
4
作者 王彬 向甜 +1 位作者 吕艺东 王晓帆 《计算机应用》 CSCD 北大核心 2023年第5期1401-1408,共8页
针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最... 针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最大化作为两个优化目标,进行双目标函数建模及理论分析;然后,设计基于NSGA-Ⅱ的LCNN结构优化框架,并在原始LCNN结构的深度卷积层之上增加基于NSGA-Ⅱ的自适应分组层,构建基于NSGA-Ⅱ的自适应多尺度的特征融合网络NSGA2-AMFFNetwork。在图像分类数据集上的实验结果显示,与手工设计的网络结构M_blockNet_v1相比,NSGA2-AMFFNetwork的平均精确度提升了1.2202个百分点,运行时间降低了41.07%。这表明所提优化算法能较好平衡LCNN的复杂度和精确度,同时还可为领域知识不足的普通用户提供更多性能表现均衡的网络结构选择方案。 展开更多
关键词 轻量型卷积神经网络 特征提取通道分组优化 双目标函数建模 快速非支配排序遗传算法 图像分类 进化算法
下载PDF
基于LAM-Net的轨道侵入界异物自主检测系统 被引量:5
5
作者 叶涛 赵宗扬 郑志康 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第9期206-218,共13页
针对轨道入侵异物对行车安全造成的极大威胁,而现有的轨道目标检测算法难以平衡检测精度和速度、易受复杂环境影响以及难以部署于嵌入式设备等问题,提出了一种轻量型自适应多尺度卷积神经网络,其通过特征图线性变换简化特征提取过程,使... 针对轨道入侵异物对行车安全造成的极大威胁,而现有的轨道目标检测算法难以平衡检测精度和速度、易受复杂环境影响以及难以部署于嵌入式设备等问题,提出了一种轻量型自适应多尺度卷积神经网络,其通过特征图线性变换简化特征提取过程,使用自适应多尺度特征融合优化特征表达能力,并通过设计轻量型注意力进一步提升异物检测精度;同时,结合NVIDIA Jetson TX2嵌入式平台,研制了轨道入侵异物自主检测系统。实验结果表明,本文提出的模型很好地平衡了检测速度和精度,在NVIDIA GeForce GTX1080Ti的GPU平台上对轨道数据集的检测速度为297 FPS,检测精度为92.96%,比YOLOv4-tiny高7.72%,实现了在轨道交通复杂场景下高精度、高速度以及高鲁棒性的检测入侵异物。 展开更多
关键词 目标检测算法 轻量型卷积神经网络 深度学习 轨道入侵异物 自适应特征融合 检测系统
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部