针对目前基于深度学习的电力线路巡检中目标检测速度慢、准确率低的问题,提出了一种采用经量级卷积神经网络的电力线路故障检测方法,对销钉缺陷、绝缘子自爆以及鸟巢这三种常见故障进行检测。在YOLOv5(You Only Look Once v5)算法的基础...针对目前基于深度学习的电力线路巡检中目标检测速度慢、准确率低的问题,提出了一种采用经量级卷积神经网络的电力线路故障检测方法,对销钉缺陷、绝缘子自爆以及鸟巢这三种常见故障进行检测。在YOLOv5(You Only Look Once v5)算法的基础上,首先使用Ghost模块设计轻量级网络,减小网络的参数量和计算时间,提高了线路巡检的实时性;其次,利用跨层级联的方式改进特征金字塔,更好地融合特征,提高了网络的精度;最后,使用CIoU Loss损失函数加快网络的收敛速度。经过实验验证,原来的YOLOv3模型和YOLOv5模型进行对比,巡检平均精度均值提高了3.49%和1.23%,巡检时间分别降低了10.752ms和5.577ms,验证了方法的有效性。展开更多
文摘针对目前基于深度学习的电力线路巡检中目标检测速度慢、准确率低的问题,提出了一种采用经量级卷积神经网络的电力线路故障检测方法,对销钉缺陷、绝缘子自爆以及鸟巢这三种常见故障进行检测。在YOLOv5(You Only Look Once v5)算法的基础上,首先使用Ghost模块设计轻量级网络,减小网络的参数量和计算时间,提高了线路巡检的实时性;其次,利用跨层级联的方式改进特征金字塔,更好地融合特征,提高了网络的精度;最后,使用CIoU Loss损失函数加快网络的收敛速度。经过实验验证,原来的YOLOv3模型和YOLOv5模型进行对比,巡检平均精度均值提高了3.49%和1.23%,巡检时间分别降低了10.752ms和5.577ms,验证了方法的有效性。