中文电子病历命名实体识别主要是研究电子病历病程记录文书数据集,文章提出对医疗手术麻醉文书数据集进行命名实体识别的研究。利用轻量级来自Transformer的双向编码器表示(A Lite Bidirectional Encoder Representation from Transform...中文电子病历命名实体识别主要是研究电子病历病程记录文书数据集,文章提出对医疗手术麻醉文书数据集进行命名实体识别的研究。利用轻量级来自Transformer的双向编码器表示(A Lite Bidirectional Encoder Representation from Transformers,ALBERT)预训练模型微调数据集和Tranfomers中的trainer训练器训练模型的方法,实现在医疗手术麻醉文书上识别手术麻醉事件命名实体与获取复杂麻醉医疗质量控制指标值。文章为医疗手术麻醉文书命名实体识别提供了可借鉴的思路,并且为计算复杂麻醉医疗质量控制指标值提供了一种新的解决方案。展开更多
针对军事重要目标实体自动获取的问题,提出一种将基于转换器的轻量级双向编码表征(a lite BERT,ALBERT)、双向门控循环单元(Bi-Gated recurrent unit,BiGRU)、条件随机场(conditional random field,CRF)相结合的小样本数据集命名实体识...针对军事重要目标实体自动获取的问题,提出一种将基于转换器的轻量级双向编码表征(a lite BERT,ALBERT)、双向门控循环单元(Bi-Gated recurrent unit,BiGRU)、条件随机场(conditional random field,CRF)相结合的小样本数据集命名实体识别方法.考虑到军事重要目标公开数据相对较少实体种类较多的问题,使用基于迁移学习的ALBERT作为分布式字符向量的生成模型;通过参数相对较少、泛化能力较强的BiGRU模型获取序列文本的上下文特征;通过CRF对输出添加约束,最终得到序列标注结果.实验结果表明:与传统的隐马尔卡夫模型(hidden Markov model,HMM)和双向长短期记忆-条件随机场(BiLSTM-CRF)模型相比,提出的方法F1值分别提升了7.1%和6.5%;与CRF模型相比,解决了人工定义特征模板效率低的问题,F1值提升了2.6%,为后续军事重要目标知识图谱的自动化构建提供了方法支撑.展开更多
文摘中文电子病历命名实体识别主要是研究电子病历病程记录文书数据集,文章提出对医疗手术麻醉文书数据集进行命名实体识别的研究。利用轻量级来自Transformer的双向编码器表示(A Lite Bidirectional Encoder Representation from Transformers,ALBERT)预训练模型微调数据集和Tranfomers中的trainer训练器训练模型的方法,实现在医疗手术麻醉文书上识别手术麻醉事件命名实体与获取复杂麻醉医疗质量控制指标值。文章为医疗手术麻醉文书命名实体识别提供了可借鉴的思路,并且为计算复杂麻醉医疗质量控制指标值提供了一种新的解决方案。
文摘针对军事重要目标实体自动获取的问题,提出一种将基于转换器的轻量级双向编码表征(a lite BERT,ALBERT)、双向门控循环单元(Bi-Gated recurrent unit,BiGRU)、条件随机场(conditional random field,CRF)相结合的小样本数据集命名实体识别方法.考虑到军事重要目标公开数据相对较少实体种类较多的问题,使用基于迁移学习的ALBERT作为分布式字符向量的生成模型;通过参数相对较少、泛化能力较强的BiGRU模型获取序列文本的上下文特征;通过CRF对输出添加约束,最终得到序列标注结果.实验结果表明:与传统的隐马尔卡夫模型(hidden Markov model,HMM)和双向长短期记忆-条件随机场(BiLSTM-CRF)模型相比,提出的方法F1值分别提升了7.1%和6.5%;与CRF模型相比,解决了人工定义特征模板效率低的问题,F1值提升了2.6%,为后续军事重要目标知识图谱的自动化构建提供了方法支撑.