为提高钢丝绳开裂、抽丝图像的识别精度与召回率,本文提出一种基于改进YOLOv5s(you only look once,你只需看一次)的趸船钢丝绳缺陷检测算法。首先在YOLOv5s模型的基础上进行改进,改进方案包括:用特征重组算子(CARAFE)替代最近邻插值进...为提高钢丝绳开裂、抽丝图像的识别精度与召回率,本文提出一种基于改进YOLOv5s(you only look once,你只需看一次)的趸船钢丝绳缺陷检测算法。首先在YOLOv5s模型的基础上进行改进,改进方案包括:用特征重组算子(CARAFE)替代最近邻插值进行上采样,以增强特征图的完整性;引入卷积注意模块(CBAM)强化重要特征通道;损失函数由完全交并比损失(CIoU_Loss)替换为扩展交并比损失(EIoU_Loss),以提高边框位置的精度;采用解耦合头减少计算量,提升模型性能与鲁棒性。随后,构建一个专门用于训练和测试的钢丝绳缺陷数据集。通过对比实验结果表明:改进后的YOLOv5s算法在召回率上提高了1.2%,平均精度均值提升了2.2%,呈现出更优的检测效果,并为未来的检测研究提供了理论基础。展开更多
无人机场景下航拍图像存在密度高、目标小、覆盖范围广等特性,使得现有的目标检测器容易出现错检漏检的现象,为了提高识别的精度,提出了一种改进Yolov5的目标检测模型。通过采用梯度流丰富的C2F模块增加模型的特征提取能力。引入上采样...无人机场景下航拍图像存在密度高、目标小、覆盖范围广等特性,使得现有的目标检测器容易出现错检漏检的现象,为了提高识别的精度,提出了一种改进Yolov5的目标检测模型。通过采用梯度流丰富的C2F模块增加模型的特征提取能力。引入上采样算子CARAFE(content-aware reassembly of features)增加感受野进行数据特征融合,提升特征金字塔网络性能。通过采用全局性动态标签分配策略,提高模型识别准确率。通过VisDrone2019数据集验证表明,改进后的模型平均精度mAP值达到65.3%,较传统模型提升了24.7个百分点,可以更加准确地完成航拍过程中针对目标的检测任务。展开更多
针对YOLOv8s模型在钢材表面缺陷检测任务中特征提取能力不足、特征融合不充分以及收敛速度慢、回归精度差等问题,提出一种基于改进YOLOv8s的钢材表面缺陷检测算法。首先,为了使模型关注更多维度的特征信息,将YOLOv8s模型主干网络和颈部...针对YOLOv8s模型在钢材表面缺陷检测任务中特征提取能力不足、特征融合不充分以及收敛速度慢、回归精度差等问题,提出一种基于改进YOLOv8s的钢材表面缺陷检测算法。首先,为了使模型关注更多维度的特征信息,将YOLOv8s模型主干网络和颈部网络中的部分C2f模块替换为C2f-Triplet模块;其次,为了使模型在更大的感知区域内聚合上下文信息,将YOLOv8s模型颈部网络中的最近邻上采样模块替换为内容感知特征重组(content-aware reassembly of features,CARAFE)上采样算子;最后,为了提高模型收敛速度和回归精度,将原YOLOv8s的CIoU回归损失函数替换为SIoU损失函数。实验结果表明:在NEU-DET数据集上,改进后的YOLOv8s钢材表面缺陷检测算法较原YOLOv8s算法精确率提高1.6百分点,平均精度均值提高2.2百分点。相比于目前主流的钢材表面缺陷检测算法,改进后的YOLOv8s钢材表面缺陷检测算法可以更加准确地检测出钢材表面缺陷的类别和位置,并且模型相对较小,便于在移动端部署。展开更多
带钢的表面缺陷对带钢的质量影响极大。针对由于带钢缺陷存在类间相似且容易受背景干扰,导致检测模型的精度较差的问题,提出了一种基于YOLOv8n的轻量级实时检测模型EDD-YOLO(EnhanceDefectsDe-tectionYOLO)。首先,构造了一个特殊卷积ECC...带钢的表面缺陷对带钢的质量影响极大。针对由于带钢缺陷存在类间相似且容易受背景干扰,导致检测模型的精度较差的问题,提出了一种基于YOLOv8n的轻量级实时检测模型EDD-YOLO(EnhanceDefectsDe-tectionYOLO)。首先,构造了一个特殊卷积ECConv(EnhanceCoordConv),其使用额外的坐标通道更加清晰地感受待检测目标的空间位置信息;其次,将轻量级注意力机制EMA(EfficientMulti-ScaleAttention)嵌入特征融合网络中,使得计算资源高效且合理分配,增强特征融合能力;然后,采用CARAFE(Content-AwareReAssembly of Features Extraction)替代原融合网络的上采样模块;最后,在预测部分使用WIOU改进原损失函数,加速模型收敛。实验数据表明,该模型相较于YOLOv8n,检测精度提高3.6%,检测速度保持在166fps,并且模型大小、空间复杂度与原模型基本持平,更好地满足了复杂工业场景下带钢缺陷的实时检测要求。展开更多
文摘为提高钢丝绳开裂、抽丝图像的识别精度与召回率,本文提出一种基于改进YOLOv5s(you only look once,你只需看一次)的趸船钢丝绳缺陷检测算法。首先在YOLOv5s模型的基础上进行改进,改进方案包括:用特征重组算子(CARAFE)替代最近邻插值进行上采样,以增强特征图的完整性;引入卷积注意模块(CBAM)强化重要特征通道;损失函数由完全交并比损失(CIoU_Loss)替换为扩展交并比损失(EIoU_Loss),以提高边框位置的精度;采用解耦合头减少计算量,提升模型性能与鲁棒性。随后,构建一个专门用于训练和测试的钢丝绳缺陷数据集。通过对比实验结果表明:改进后的YOLOv5s算法在召回率上提高了1.2%,平均精度均值提升了2.2%,呈现出更优的检测效果,并为未来的检测研究提供了理论基础。
文摘无人机场景下航拍图像存在密度高、目标小、覆盖范围广等特性,使得现有的目标检测器容易出现错检漏检的现象,为了提高识别的精度,提出了一种改进Yolov5的目标检测模型。通过采用梯度流丰富的C2F模块增加模型的特征提取能力。引入上采样算子CARAFE(content-aware reassembly of features)增加感受野进行数据特征融合,提升特征金字塔网络性能。通过采用全局性动态标签分配策略,提高模型识别准确率。通过VisDrone2019数据集验证表明,改进后的模型平均精度mAP值达到65.3%,较传统模型提升了24.7个百分点,可以更加准确地完成航拍过程中针对目标的检测任务。
文摘针对YOLOv8s模型在钢材表面缺陷检测任务中特征提取能力不足、特征融合不充分以及收敛速度慢、回归精度差等问题,提出一种基于改进YOLOv8s的钢材表面缺陷检测算法。首先,为了使模型关注更多维度的特征信息,将YOLOv8s模型主干网络和颈部网络中的部分C2f模块替换为C2f-Triplet模块;其次,为了使模型在更大的感知区域内聚合上下文信息,将YOLOv8s模型颈部网络中的最近邻上采样模块替换为内容感知特征重组(content-aware reassembly of features,CARAFE)上采样算子;最后,为了提高模型收敛速度和回归精度,将原YOLOv8s的CIoU回归损失函数替换为SIoU损失函数。实验结果表明:在NEU-DET数据集上,改进后的YOLOv8s钢材表面缺陷检测算法较原YOLOv8s算法精确率提高1.6百分点,平均精度均值提高2.2百分点。相比于目前主流的钢材表面缺陷检测算法,改进后的YOLOv8s钢材表面缺陷检测算法可以更加准确地检测出钢材表面缺陷的类别和位置,并且模型相对较小,便于在移动端部署。
文摘带钢的表面缺陷对带钢的质量影响极大。针对由于带钢缺陷存在类间相似且容易受背景干扰,导致检测模型的精度较差的问题,提出了一种基于YOLOv8n的轻量级实时检测模型EDD-YOLO(EnhanceDefectsDe-tectionYOLO)。首先,构造了一个特殊卷积ECConv(EnhanceCoordConv),其使用额外的坐标通道更加清晰地感受待检测目标的空间位置信息;其次,将轻量级注意力机制EMA(EfficientMulti-ScaleAttention)嵌入特征融合网络中,使得计算资源高效且合理分配,增强特征融合能力;然后,采用CARAFE(Content-AwareReAssembly of Features Extraction)替代原融合网络的上采样模块;最后,在预测部分使用WIOU改进原损失函数,加速模型收敛。实验数据表明,该模型相较于YOLOv8n,检测精度提高3.6%,检测速度保持在166fps,并且模型大小、空间复杂度与原模型基本持平,更好地满足了复杂工业场景下带钢缺陷的实时检测要求。