在信号环境日益复杂、信号调制样式种类多变的情况下,采用深度学习方法实现通信信号的调制识别是一种有效手段。针对当前模型存在着超参数量大、部分信号类型(如正交幅度调制信号)识别率低、识别时间过长等问题,提出了一种基于轻量神经...在信号环境日益复杂、信号调制样式种类多变的情况下,采用深度学习方法实现通信信号的调制识别是一种有效手段。针对当前模型存在着超参数量大、部分信号类型(如正交幅度调制信号)识别率低、识别时间过长等问题,提出了一种基于轻量神经网络的无线电自动调制识别算法。首先通过基于深度可分离卷积的基础单元实现特征提取,并引入通道洗牌操作对不同通道的特征进行重新分配,最终使用注意力机制和Smoothing Maximum Unit(SMU)激活函数加强特征挖掘、复用及学习能力。所提模型能够显著增强空间和通道间的信息交流,有效减少模型超参数量和训练耗时,并进一步解决深层网络中的梯度消失问题。实验结果表明,所提模型的平均识别准确率为90.60%,参数量为75000,训练耗时更短,优于目前流行的调制识别算法,尤其能缓解模型越复杂响应速度越慢的问题,证明了所提模型的有效性及鲁棒性。展开更多
文摘在信号环境日益复杂、信号调制样式种类多变的情况下,采用深度学习方法实现通信信号的调制识别是一种有效手段。针对当前模型存在着超参数量大、部分信号类型(如正交幅度调制信号)识别率低、识别时间过长等问题,提出了一种基于轻量神经网络的无线电自动调制识别算法。首先通过基于深度可分离卷积的基础单元实现特征提取,并引入通道洗牌操作对不同通道的特征进行重新分配,最终使用注意力机制和Smoothing Maximum Unit(SMU)激活函数加强特征挖掘、复用及学习能力。所提模型能够显著增强空间和通道间的信息交流,有效减少模型超参数量和训练耗时,并进一步解决深层网络中的梯度消失问题。实验结果表明,所提模型的平均识别准确率为90.60%,参数量为75000,训练耗时更短,优于目前流行的调制识别算法,尤其能缓解模型越复杂响应速度越慢的问题,证明了所提模型的有效性及鲁棒性。