期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进的RFBNet行人检测算法 被引量:1
1
作者 黎国斌 张剑 +1 位作者 林向会 谢本亮 《智能计算机与应用》 2021年第6期173-177,共5页
深度学习方法在行人检测领域取得了不错的成绩,但还存在一些问题需进一步解决例如遮挡、难负样本等问题。本文提出基于注意力机制的RFBNet行人检测算法,针对部分遮挡问题,可以取得更好的检测效果。在注意力机制的引导下,网络更加倾向于... 深度学习方法在行人检测领域取得了不错的成绩,但还存在一些问题需进一步解决例如遮挡、难负样本等问题。本文提出基于注意力机制的RFBNet行人检测算法,针对部分遮挡问题,可以取得更好的检测效果。在注意力机制的引导下,网络更加倾向于可见部分的行人信息抑制背景信息从而避免其误导网络训练进一步降低负样本误检为正样本的概率。为了将模型能够部署在轻量级设备上本文使用参数量更少的轻量网络模型。在PASCAL VOC行人数据集上实验结果显示通过增加通道注意力机制,检测平均精准率增加了 0.51%;当模型参数量裁剪为0.9M和3.1M时,行人检测精度仍然能够达到78.04%和80.01%,而模型参数量压缩为原来的约10%。本文算法可以提高行人检测的精度且具有良好的鲁棒性和适用性。 展开更多
关键词 注意力机制 RFBNet 轻量网络模型 行人检测 部分遮挡
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部