Fe (iron) deficiency is an important nutritional problem particularly in crop plants grown on calcareous soils. Phytosiderophore (PS) release has been suggested to be linked to the ability of graminaceous species and ...Fe (iron) deficiency is an important nutritional problem particularly in crop plants grown on calcareous soils. Phytosiderophore (PS) release has been suggested to be linked to the ability of graminaceous species and genotypes to overcome Fe_deficiency chlorosis. Thus, enhancing PS release is a critical step to improve Fe nutrition of plants grown on Fe stressed soils. The heterosis of PS release rate in common wheat was studied by analyzing PS release from roots of three hybrids and their four parents grown in Fe_deficiency nutrient solution under controlled environmental conditions. PS release rates were determined at two or three day intervals after onset of Fe_deficiency symptoms by the measurement of Fe mobilizing capacity of root exudates from freshly precipitated FeⅢ hydroxide. High amounts of phytosiderophores were released from the roots of all wheat genotypes under Fe_deficiency, and the amount progressively increased with the development of Fe_deficiency chlorosis. The results revealed that the hybrids had more sensitive feedback systems which secreted more phytosiderophores under Fe_deficiency than their parents. By analyzing the relationship between each hybrid and its parents, it was also found that the parents should be selected on the basis of the rate of PS release and the combining ability by using the heterosis to improve Fe utilizability of crop plants.展开更多
The VOx catalysts supported on dealuminated Beta zeolite(Si Beta) with varying V loadings(from 0.5 to 10 wt%) are prepared and tested for their catalytic activities in the reaction of direct dehydrogenation of propane...The VOx catalysts supported on dealuminated Beta zeolite(Si Beta) with varying V loadings(from 0.5 to 10 wt%) are prepared and tested for their catalytic activities in the reaction of direct dehydrogenation of propane to propylene(PDH). It is characterized that the VSi Beta catalysts possess different kinds of vanadium species on the Si Beta support, including monomeric or isolated VOx species at a low V loading, and polynuclear VOx species in different polymerization degrees at higher V loadings. The 3 VSi Beta catalyst(V loading is 3 wt%), containing isolated VOx species in monolayer, shows around 40% of propane conversion with 90% of propylene selectivity(reaction conditions: 600 o C, 4000 m L g–1 h–1) which are comparable to VSi Beta catalysts with higher V loadings. The catalytic activity exhibits a good linear relationship with the amount of generated acidic sites, which are derived from the interaction sites between VOx species and Si Beta support, and keeps stable after several regeneration cycles. Thus, as the VOx species directly contact with Si Beta support via V–O–Si bonds, a reactivity enhancement can be achieved. While, the initial valence state of V does not seem to influence the catalytic performance. Moreover, the aggregation degree of VOx species determines the propylene selectivity and deactivation rate, both of which increase as raising the V loading amount.展开更多
Immediate loading(IL)increases the risk of marginal bone loss.The present study investigated the biomechanical response of peri-implant bone in rabbits after IL,aiming at optimizing load management.Ninety-six implants...Immediate loading(IL)increases the risk of marginal bone loss.The present study investigated the biomechanical response of peri-implant bone in rabbits after IL,aiming at optimizing load management.Ninety-six implants were installed bilaterally into femurs of 48 rabbits.Test implants on the left side created the maximal initial stress of 6.9 and 13.4 MPa in peri-implant bone and unloaded implants on the contralateral side were controls.Bone morphology and bone-implant interface strength were measured with histological examination and push-out testing during a 12-week observation period.Additionally,the animal data were incorporated into finite element(FE)models to calculate the bone stress distribution at different levels of osseointegration.Results showed that the stress was concentrated in the bone margin and the bone stress gradually decreased as osseointegration proceeded.A stress of about 2.0 MPa in peri-implant bone had a positive effect on new bone formation,osseointegration and bone-implant interface strength.Bone loss was observed in some specimens with stress exceeding 4.0 MPa.Data indicate that IL significantly increases bone stress during the early postoperative period,but the load-bearing capacity of peri-implant bone increases rapidly with an increase of bone-implant contact.Favorable bone responses may be continually promoted when the stress in peri-implant bone is maintained at a definite level.Accordingly,the progressive loading mode is recommended for IL implants.展开更多
文摘Fe (iron) deficiency is an important nutritional problem particularly in crop plants grown on calcareous soils. Phytosiderophore (PS) release has been suggested to be linked to the ability of graminaceous species and genotypes to overcome Fe_deficiency chlorosis. Thus, enhancing PS release is a critical step to improve Fe nutrition of plants grown on Fe stressed soils. The heterosis of PS release rate in common wheat was studied by analyzing PS release from roots of three hybrids and their four parents grown in Fe_deficiency nutrient solution under controlled environmental conditions. PS release rates were determined at two or three day intervals after onset of Fe_deficiency symptoms by the measurement of Fe mobilizing capacity of root exudates from freshly precipitated FeⅢ hydroxide. High amounts of phytosiderophores were released from the roots of all wheat genotypes under Fe_deficiency, and the amount progressively increased with the development of Fe_deficiency chlorosis. The results revealed that the hybrids had more sensitive feedback systems which secreted more phytosiderophores under Fe_deficiency than their parents. By analyzing the relationship between each hybrid and its parents, it was also found that the parents should be selected on the basis of the rate of PS release and the combining ability by using the heterosis to improve Fe utilizability of crop plants.
基金supported by the National Natural Science Foundation of China(21421001,21573115)the 111 project(B12015)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2017-K13)~~
文摘The VOx catalysts supported on dealuminated Beta zeolite(Si Beta) with varying V loadings(from 0.5 to 10 wt%) are prepared and tested for their catalytic activities in the reaction of direct dehydrogenation of propane to propylene(PDH). It is characterized that the VSi Beta catalysts possess different kinds of vanadium species on the Si Beta support, including monomeric or isolated VOx species at a low V loading, and polynuclear VOx species in different polymerization degrees at higher V loadings. The 3 VSi Beta catalyst(V loading is 3 wt%), containing isolated VOx species in monolayer, shows around 40% of propane conversion with 90% of propylene selectivity(reaction conditions: 600 o C, 4000 m L g–1 h–1) which are comparable to VSi Beta catalysts with higher V loadings. The catalytic activity exhibits a good linear relationship with the amount of generated acidic sites, which are derived from the interaction sites between VOx species and Si Beta support, and keeps stable after several regeneration cycles. Thus, as the VOx species directly contact with Si Beta support via V–O–Si bonds, a reactivity enhancement can be achieved. While, the initial valence state of V does not seem to influence the catalytic performance. Moreover, the aggregation degree of VOx species determines the propylene selectivity and deactivation rate, both of which increase as raising the V loading amount.
基金supported by the National Natural Science Foundation of China(10902010,11120101001)National Science&Technology Pillar Program of China(2012BAI22B02)Research Fund for the Doctoral Program of Higher Education of China(20131102130004)
文摘Immediate loading(IL)increases the risk of marginal bone loss.The present study investigated the biomechanical response of peri-implant bone in rabbits after IL,aiming at optimizing load management.Ninety-six implants were installed bilaterally into femurs of 48 rabbits.Test implants on the left side created the maximal initial stress of 6.9 and 13.4 MPa in peri-implant bone and unloaded implants on the contralateral side were controls.Bone morphology and bone-implant interface strength were measured with histological examination and push-out testing during a 12-week observation period.Additionally,the animal data were incorporated into finite element(FE)models to calculate the bone stress distribution at different levels of osseointegration.Results showed that the stress was concentrated in the bone margin and the bone stress gradually decreased as osseointegration proceeded.A stress of about 2.0 MPa in peri-implant bone had a positive effect on new bone formation,osseointegration and bone-implant interface strength.Bone loss was observed in some specimens with stress exceeding 4.0 MPa.Data indicate that IL significantly increases bone stress during the early postoperative period,but the load-bearing capacity of peri-implant bone increases rapidly with an increase of bone-implant contact.Favorable bone responses may be continually promoted when the stress in peri-implant bone is maintained at a definite level.Accordingly,the progressive loading mode is recommended for IL implants.