This paper presents sliding mode technique associated to the direct torque control (DTC) for an isolated-loaded permanent magnet synchronous generator (PMSG). The machine delivers an active power to a DC-load via ...This paper presents sliding mode technique associated to the direct torque control (DTC) for an isolated-loaded permanent magnet synchronous generator (PMSG). The machine delivers an active power to a DC-load via a converter connected to a single capacitor on the DC side. Since the converter/capacitor model is nonlinear, the sliding mode technique constitutes a powerful tool to ensure the DC-bus voltage regulation. The computer simulations are provided to verify the validity of the proposed control algorithm.展开更多
Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minor...Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for widescale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.展开更多
Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible gra...Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible graphdiyne oxide(GDYO)with a large number of functional groups,we fabricated organic solar cells employing GDYO-modified poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)(PEDOT:PSS)as hole transport materials.Results show that theπ±πinteraction between GDYO and PEDOT:PSS is beneficial to the formation of an optimized charge carrier transfer channel and improves the conductivity and charge carrier mobility in the hole transport layer.Moreover,the improved interfacial contact contributes to the suppression of charge carrier recombination and the elevation of charge carrier extraction between the hole transport layer and the active layer.More importantly,the occurrence of charge carrier separation benefits from the optimized morphology of the active layer,which efficiently improves the performance,as proven by the results of transient absorption measurements.Therefore,with the holistic management approach to the multiobjective optimization of the charge carrier dynamics,a photoelectric conversion efficiency of 17.5%(with the certified value of 17.2%)is obtained for binary organic solar cells.All of these results indicate the potential application of the functionalized graphdiyne in the field of organic optoelectronic devices.展开更多
The conversion efficiency and noise figure (NF) of the silicon-on-insulator (SOI) waveguide-based wavelength converter are investigated with the coupled equations. The effects of the pump power, the nonlinear absorpti...The conversion efficiency and noise figure (NF) of the silicon-on-insulator (SOI) waveguide-based wavelength converter are investigated with the coupled equations. The effects of the pump power, the nonlinear absorption and the waveguide length on the conversion efficiency and noise figure are discussed. The conversion efficiency decreases with the increasing pump power and the noise figure is degraded due to the two-photon absorption (TPA) and the TPA-induced free-carrier absorption (FCA) at the higher pump power. With the increasing of the free carrier lifetime, the conversion efficiency will decrease and the noise figure will increase accordingly. The optimal waveguide length depends on the pump power and the free carrier lifetime. In practical applications, the high conversion efficiency and low noise figure can be achieved by choosing suitable parameters of the silicon waveguide.展开更多
Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhod...Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.展开更多
文摘This paper presents sliding mode technique associated to the direct torque control (DTC) for an isolated-loaded permanent magnet synchronous generator (PMSG). The machine delivers an active power to a DC-load via a converter connected to a single capacitor on the DC side. Since the converter/capacitor model is nonlinear, the sliding mode technique constitutes a powerful tool to ensure the DC-bus voltage regulation. The computer simulations are provided to verify the validity of the proposed control algorithm.
文摘Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for widescale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.
基金supported by the National Natural Science Foundation of China(21975273,21801014,21773012,and U2032112)Shandong Provincial Natural Science Foundation(ZR2021QE191)+3 种基金the Scientific Research Starting Foundation of Outstanding Young Scholar of Shandong Universitythe Future Young Scholars Program of Shandong Universitythe Fundamental Research Funds of Shandong Universitysupported by the Analysis&Testing Center of Beijing Institute of Technology。
文摘Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible graphdiyne oxide(GDYO)with a large number of functional groups,we fabricated organic solar cells employing GDYO-modified poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)(PEDOT:PSS)as hole transport materials.Results show that theπ±πinteraction between GDYO and PEDOT:PSS is beneficial to the formation of an optimized charge carrier transfer channel and improves the conductivity and charge carrier mobility in the hole transport layer.Moreover,the improved interfacial contact contributes to the suppression of charge carrier recombination and the elevation of charge carrier extraction between the hole transport layer and the active layer.More importantly,the occurrence of charge carrier separation benefits from the optimized morphology of the active layer,which efficiently improves the performance,as proven by the results of transient absorption measurements.Therefore,with the holistic management approach to the multiobjective optimization of the charge carrier dynamics,a photoelectric conversion efficiency of 17.5%(with the certified value of 17.2%)is obtained for binary organic solar cells.All of these results indicate the potential application of the functionalized graphdiyne in the field of organic optoelectronic devices.
基金supported by the Major State Basic Research Development Program of China (No.2010CB328304)the National Natural Science Foundation of China (No.60807022)the Discipline Co-construction Project of Beijing Munnicipal Commission of Education (No.YB20081001301)
文摘The conversion efficiency and noise figure (NF) of the silicon-on-insulator (SOI) waveguide-based wavelength converter are investigated with the coupled equations. The effects of the pump power, the nonlinear absorption and the waveguide length on the conversion efficiency and noise figure are discussed. The conversion efficiency decreases with the increasing pump power and the noise figure is degraded due to the two-photon absorption (TPA) and the TPA-induced free-carrier absorption (FCA) at the higher pump power. With the increasing of the free carrier lifetime, the conversion efficiency will decrease and the noise figure will increase accordingly. The optimal waveguide length depends on the pump power and the free carrier lifetime. In practical applications, the high conversion efficiency and low noise figure can be achieved by choosing suitable parameters of the silicon waveguide.
基金supported by the Ministry of Science and Technology(2014CB643502,2016YFA0200200)the Natural Science Foundation of China(21404060,51422304,91433101)
文摘Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.