Synthetic aperture radar (SAR) is theoretically based on uniform rectilinear motion. But in real situations, the flight cannot be kept in a uniform rectilinear motion due to many factors. Therefore, the motion compens...Synthetic aperture radar (SAR) is theoretically based on uniform rectilinear motion. But in real situations, the flight cannot be kept in a uniform rectilinear motion due to many factors. Therefore, the motion compensation is needed to achieve the high-resolution image. This paper proposes an improved motion information sensor (MIS)-based on global navigation statellite system (GNSS) and strapdown inertial navigation system (SINS) for SAR motion compensation. MIS can provide the long-term absolute accuracy, and the short-term high relative accuracy during SAR imaging. Many issues related to MIS, such as system design, error models and navigation algorithms, are stressed. Experimental results show that MIS can provide accurate navigation information (position, velocity and attitude) to meet the requirements of SAR motion compensation. Especially, MIS is suitable for the case: the accuracy of airplane master inertial navigation system is too low or not configured.展开更多
An airborne oceanographic lidar, with a frequency-tripled Q-switched Nd: YAG laser of 355 nm, has been designed to measure chlorophyll-a (Chl-a) concentration in the sea surface layer by the Ocean Remote Sensing In...An airborne oceanographic lidar, with a frequency-tripled Q-switched Nd: YAG laser of 355 nm, has been designed to measure chlorophyll-a (Chl-a) concentration in the sea surface layer by the Ocean Remote Sensing Institute, OUC. The field experiment was carried out in the bay which is located south of the Liaodong Peninsula on the 10th of September 2005. After the flight, the raw data were processed and analyzed by the fluorescence-to-Raman ratio method with seawater attenuation coefficients calculated from signal profiles. The results of Chl-a concentration sea water were also compared with those of Chl-a concentration by measurements by lidar are shown. The measurements in clear a Moderate Resolution Imaging Spectroradiometer (MODIS).展开更多
This paper presents a joint method of Doppler Beam Sharpen (DBS) imaging and Signal Subspace Processing (SSP) to achieve Ground Moving Target Indication(GMTI) for along- track dual-antenna airborne radar. When the err...This paper presents a joint method of Doppler Beam Sharpen (DBS) imaging and Signal Subspace Processing (SSP) to achieve Ground Moving Target Indication(GMTI) for along- track dual-antenna airborne radar. When the error of the two antennas (also refers to channels) changes pulse to pulse, the method SSP is used to precisely calibrate the two antennas’ DBS images, then to detect the ground moving targets in the difference image of the two calibrated images. The method DBS-SSP is proved to offer performance improvement on the actually measured data and simulated data.展开更多
Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts...Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.展开更多
Airborne light detection and ranging( LIDAR) has revolutionized conventional methods for digital terrain models( DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps taken to obtain a high q...Airborne light detection and ranging( LIDAR) has revolutionized conventional methods for digital terrain models( DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps taken to obtain a high quality DTM. This paper presents a segments-based progressive TIN( triangulated irregular network) densification( SPTD) filter that can automatically separate ground points from non-ground points. The SPTD method is composed of two key steps: point cloud segmentation and clustering by iterative judgement. The clustering method uses the dual distance to obtain a set of seed points as a coarse spatial clustering process. Then the rest of the valid point clouds are classified iteratively. Finally,the datasets provided by ISPRS are utilized to test the filtering performance.In comparison with the commercial software Terra Solid,the experimental results show that the SPTD method in this paper can avoid single threshold restrictions. The expected accuracy of ground point determination is capable of producing reliable DTMs in the discontinuous areas.展开更多
The Geoscience Laser Altimeter System(GLAS)accurately detects the vertical structural information of a target within its laser spot and is a promising system for the inversion of structural features and other biophysi...The Geoscience Laser Altimeter System(GLAS)accurately detects the vertical structural information of a target within its laser spot and is a promising system for the inversion of structural features and other biophysical parameters of forest ecosystems.Since the GLAS footprints are discontinuously distributed with a relativity low density,continuous vegetation height distributions cannot be mapped with a high accuracy using GLAS data alone.The MODIS BRDF product provides more forest structural information than other optical remote sensing data.This study aimed to map forest canopy heights over China from the GLAS and MODIS BRDF data.Firstly,the waveform characteristic parameters were extracted from the GLAS data by the method of wavelet analysis,and the terrain index was calculated using the ASTER GDEM data.Secondly,the model reducing the topographic influence was constructed from the waveform characteristic parameters and terrain index.Thirdly,the final canopy height estimation model was constructed from the neural network combining the canopy height estimated with the GLAS point and the MODIS BRDF data,and applied to get the continuous canopy height map over China.Finally,the map was validated by the measured data and the airborne Li DAR data,and the validation results indicated that forest canopy heights can be estimated with high accuracy from combined GLAS and MODIS data.展开更多
文摘Synthetic aperture radar (SAR) is theoretically based on uniform rectilinear motion. But in real situations, the flight cannot be kept in a uniform rectilinear motion due to many factors. Therefore, the motion compensation is needed to achieve the high-resolution image. This paper proposes an improved motion information sensor (MIS)-based on global navigation statellite system (GNSS) and strapdown inertial navigation system (SINS) for SAR motion compensation. MIS can provide the long-term absolute accuracy, and the short-term high relative accuracy during SAR imaging. Many issues related to MIS, such as system design, error models and navigation algorithms, are stressed. Experimental results show that MIS can provide accurate navigation information (position, velocity and attitude) to meet the requirements of SAR motion compensation. Especially, MIS is suitable for the case: the accuracy of airplane master inertial navigation system is too low or not configured.
基金supported by the National Natural Science Foundation of China(No.60578038)Project 985 of the Remote Sensing Laboratory of the Ministry of Education of China,Ocean University of China.
文摘An airborne oceanographic lidar, with a frequency-tripled Q-switched Nd: YAG laser of 355 nm, has been designed to measure chlorophyll-a (Chl-a) concentration in the sea surface layer by the Ocean Remote Sensing Institute, OUC. The field experiment was carried out in the bay which is located south of the Liaodong Peninsula on the 10th of September 2005. After the flight, the raw data were processed and analyzed by the fluorescence-to-Raman ratio method with seawater attenuation coefficients calculated from signal profiles. The results of Chl-a concentration sea water were also compared with those of Chl-a concentration by measurements by lidar are shown. The measurements in clear a Moderate Resolution Imaging Spectroradiometer (MODIS).
文摘This paper presents a joint method of Doppler Beam Sharpen (DBS) imaging and Signal Subspace Processing (SSP) to achieve Ground Moving Target Indication(GMTI) for along- track dual-antenna airborne radar. When the error of the two antennas (also refers to channels) changes pulse to pulse, the method SSP is used to precisely calibrate the two antennas’ DBS images, then to detect the ground moving targets in the difference image of the two calibrated images. The method DBS-SSP is proved to offer performance improvement on the actually measured data and simulated data.
文摘Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.
基金Supported by the National Natural Science Foundation of China(No.41174002)the Opening Fund of Key Laboratory of the Ministry of Water Resources(No.2015003)the Fundamental Research Funds for the Central Universities(No.2014B38614)
文摘Airborne light detection and ranging( LIDAR) has revolutionized conventional methods for digital terrain models( DTMs) acquisition. Ground filtering for airborne LIDAR is one of the core steps taken to obtain a high quality DTM. This paper presents a segments-based progressive TIN( triangulated irregular network) densification( SPTD) filter that can automatically separate ground points from non-ground points. The SPTD method is composed of two key steps: point cloud segmentation and clustering by iterative judgement. The clustering method uses the dual distance to obtain a set of seed points as a coarse spatial clustering process. Then the rest of the valid point clouds are classified iteratively. Finally,the datasets provided by ISPRS are utilized to test the filtering performance.In comparison with the commercial software Terra Solid,the experimental results show that the SPTD method in this paper can avoid single threshold restrictions. The expected accuracy of ground point determination is capable of producing reliable DTMs in the discontinuous areas.
基金supported by the Major International Cooperation and Exchange Project of National Natural Science Foundation of China(Grant No.41120114001)the National Basic Research Program of China(Grant NO.2013CB733405)+1 种基金the National Natural Science Foundation of China(Grant Nos.41371350,41171279)the 100 Talents Program of the Chinese Academy of Sciences and Beijing Natural Science Foundation(Grant No.4144074)
文摘The Geoscience Laser Altimeter System(GLAS)accurately detects the vertical structural information of a target within its laser spot and is a promising system for the inversion of structural features and other biophysical parameters of forest ecosystems.Since the GLAS footprints are discontinuously distributed with a relativity low density,continuous vegetation height distributions cannot be mapped with a high accuracy using GLAS data alone.The MODIS BRDF product provides more forest structural information than other optical remote sensing data.This study aimed to map forest canopy heights over China from the GLAS and MODIS BRDF data.Firstly,the waveform characteristic parameters were extracted from the GLAS data by the method of wavelet analysis,and the terrain index was calculated using the ASTER GDEM data.Secondly,the model reducing the topographic influence was constructed from the waveform characteristic parameters and terrain index.Thirdly,the final canopy height estimation model was constructed from the neural network combining the canopy height estimated with the GLAS point and the MODIS BRDF data,and applied to get the continuous canopy height map over China.Finally,the map was validated by the measured data and the airborne Li DAR data,and the validation results indicated that forest canopy heights can be estimated with high accuracy from combined GLAS and MODIS data.