With the increasing civil aviation passengers and the rapid development of aviation logistics,the study on remotely piloted operation(RPO)mode has received extensive attention.RPO mode constructs the piloting decision...With the increasing civil aviation passengers and the rapid development of aviation logistics,the study on remotely piloted operation(RPO)mode has received extensive attention.RPO mode constructs the piloting decisionmaking mode which involves the tripartite collaboration among airborne automatic/autonomous system,remote ground-based crews and air traffic control.In this paper,we describe the organizing architecture for commercial remotely piloted aircraft(CRPA)system and its components.Compared with the current operation mode,the new air-ground collaborative decision-making mode has been established with six different situations based on the type of the flight and the condition of the remote pilot.Taking airport surface operation as an experimental example,we model the airport surface operation process and compare the advantages and disadvantages between RPO mode and the current dual-pilot mode from the perspectives of time and operation coverage,and draw conclusions that RPO mode can basically cover the flight operations of the dual-pilot,improve the accuracy of pilot operations and greatly reduce response time by 48%in pre-flight inspection.The above research would be the foundation for the RPO development of commercial aircraft in China.展开更多
Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carr...Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carrier aircraft in the current standards and available publications. Therefore,the requirements of stall margin, longitudinal acceleration ability,altitude correction and field-of-view on approach speed were researched. Based on the flight dynamics model,the flight simulations were conducted to study the effect of the response time of engine,wave off requirements,elevator efficiency and deflection rate on the approach speed. The results presented that the approach longitudinal acceleration and altitude correction ability had crucial influence on the approach speed envelope of the aircraft. The limitations of the control requirements,field- of- view requirements and gear were also given through the simulation and analysis. Based on the above results,the approach speed envelope were determined.展开更多
This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a...This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section(NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function(NSCAT GMF), indicating satisfactory HSCAT performance.展开更多
A method for static aeroelastic trim analysis and flight loads computation of a flexible aircraft with large deformations has been presented in this paper,which considers the geometric nonlinearity of the structure an...A method for static aeroelastic trim analysis and flight loads computation of a flexible aircraft with large deformations has been presented in this paper,which considers the geometric nonlinearity of the structure and the nonplanar effects of aerodynamics.A nonplanar vortex lattice method is used to compute the nonplanar aerodynamics.The nonlinear finite element method is introduced to consider the structural geometric nonlinearity.Moreover,the surface spline method is used for structure/aerodynamics coupling.Finally,by combining the equilibrium equations of rigid motions of the deformed aircraft,the nonlinear trim problem of the flexible aircraft is solved by iterative method.For instance,the longitudinal trim analysis of a flexible aircraft with large-aspect-ratio wings is carried out by both the nonlinear method presented and the linear method of MSC Flightloads.Results obtained by these two methods are compared,and it is indicated that the results agree with each other when the deformation is small.However,because the linear method of static aeroelastic analysis does not consider the nonplanar aerodynamic effects or structural geometric nonlinearity,it is not applicable as the deformations increase.Whereas the nonlinear method presented could solve the trim problem accurately,even the deformations are large,which makes the nonlinear method suitable for rapid and efficient analysis in engineering practice.It could be used not only in the preliminary stage but also in the detail stage of aircraft design.展开更多
基金supported by the National Program on Key Basic Research Project (No. 2014CB744903)the National Natural Science Foundation of China(Nos. 61973212,61673270)+3 种基金the Shanghai Industrial Strengthening Project (No. GYQJ-2017-5-08)the Shanghai Science and Technology Committee Research Project (No. 17DZ1204304)the Civil Aviation Pre-Research ProjectsShanghai Engineering Research Center of Civil Aircraft Flight Testing.
文摘With the increasing civil aviation passengers and the rapid development of aviation logistics,the study on remotely piloted operation(RPO)mode has received extensive attention.RPO mode constructs the piloting decisionmaking mode which involves the tripartite collaboration among airborne automatic/autonomous system,remote ground-based crews and air traffic control.In this paper,we describe the organizing architecture for commercial remotely piloted aircraft(CRPA)system and its components.Compared with the current operation mode,the new air-ground collaborative decision-making mode has been established with six different situations based on the type of the flight and the condition of the remote pilot.Taking airport surface operation as an experimental example,we model the airport surface operation process and compare the advantages and disadvantages between RPO mode and the current dual-pilot mode from the perspectives of time and operation coverage,and draw conclusions that RPO mode can basically cover the flight operations of the dual-pilot,improve the accuracy of pilot operations and greatly reduce response time by 48%in pre-flight inspection.The above research would be the foundation for the RPO development of commercial aircraft in China.
文摘Many factors,such as deck motion and air wave,influence the determination of the approach speed which has an important effect on landing safety. Until recently,there are no design criteria about approach speed of carrier aircraft in the current standards and available publications. Therefore,the requirements of stall margin, longitudinal acceleration ability,altitude correction and field-of-view on approach speed were researched. Based on the flight dynamics model,the flight simulations were conducted to study the effect of the response time of engine,wave off requirements,elevator efficiency and deflection rate on the approach speed. The results presented that the approach longitudinal acceleration and altitude correction ability had crucial influence on the approach speed envelope of the aircraft. The limitations of the control requirements,field- of- view requirements and gear were also given through the simulation and analysis. Based on the above results,the approach speed envelope were determined.
基金Supported by the National Natural Science Foundation of China(No.41106152)the National Science and Technology Support Program of China(No.2013BAD13B01)+3 种基金the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the International Science&Technology Cooperation Program of China(No.2011DFA22260)the National High Technology Industrialization Project(No.[2012]2083)the Marine Public Projects of China(Nos.201105032,201305032,201105002-07)
文摘This paper introduces the background, aim, experimental design, configuration and data processing for an airborne test flight of the HY-2 Microwave scatterometer(HSCAT). The aim was to evaluate HSCAT performance and a developed data processing algorithm for the HSCAT before launch. There were three test flights of the scatterometer, on January 15, 18 and 22, 2010, over the South China Sea near Lingshui, Hainan. The test flights successfully generated simultaneous airborne scatterometer normalized radar cross section(NRCS), ASCAT wind, and ship-borne-measured wind datasets, which were used to analyze HSCAT performance. Azimuthal dependence of the NRCS relative to the wind direction was nearly cos(2w), with NRCS minima at crosswind directions, and maxima near upwind and downwind. The NRCS also showed a small difference between upwind and downwind directions, with upwind crosssections generally larger than those downwind. The dependence of airborne scatterometer NRCS on wind direction and speed showed favorable consistency with the NASA scatterometer geophysical model function(NSCAT GMF), indicating satisfactory HSCAT performance.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11172025,91116005)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20091102110015)
文摘A method for static aeroelastic trim analysis and flight loads computation of a flexible aircraft with large deformations has been presented in this paper,which considers the geometric nonlinearity of the structure and the nonplanar effects of aerodynamics.A nonplanar vortex lattice method is used to compute the nonplanar aerodynamics.The nonlinear finite element method is introduced to consider the structural geometric nonlinearity.Moreover,the surface spline method is used for structure/aerodynamics coupling.Finally,by combining the equilibrium equations of rigid motions of the deformed aircraft,the nonlinear trim problem of the flexible aircraft is solved by iterative method.For instance,the longitudinal trim analysis of a flexible aircraft with large-aspect-ratio wings is carried out by both the nonlinear method presented and the linear method of MSC Flightloads.Results obtained by these two methods are compared,and it is indicated that the results agree with each other when the deformation is small.However,because the linear method of static aeroelastic analysis does not consider the nonplanar aerodynamic effects or structural geometric nonlinearity,it is not applicable as the deformations increase.Whereas the nonlinear method presented could solve the trim problem accurately,even the deformations are large,which makes the nonlinear method suitable for rapid and efficient analysis in engineering practice.It could be used not only in the preliminary stage but also in the detail stage of aircraft design.