期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
化学链甲烷氧化偶联载氧体催化剂Na_(2)WO_(4)/Mn_(7)SiO_(12)-SiO_(2)的研究
1
作者 高雅 孙伟东 +2 位作者 赵国锋 刘晔 路勇 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期95-103,共9页
通过提高Mn_(2)O_(3)-Na_(2)WO_(4)/SiO_(2)中Mn_(2)O_(3)的含量并经原位化学链甲烷氧化偶联(CL-OCM)反应活化制得了具有良好活性和选择性的Na_(2)WO_(4)/Mn_(7)SiO_(12)-SiO_(2)载氧体催化剂,在750℃、12 s甲烷停留时间、27的较低剂烷... 通过提高Mn_(2)O_(3)-Na_(2)WO_(4)/SiO_(2)中Mn_(2)O_(3)的含量并经原位化学链甲烷氧化偶联(CL-OCM)反应活化制得了具有良好活性和选择性的Na_(2)WO_(4)/Mn_(7)SiO_(12)-SiO_(2)载氧体催化剂,在750℃、12 s甲烷停留时间、27的较低剂烷比(mCat/mCH_(4))条件下,获得了12%的CH_(4)转化率和81.5%的C2-C3选择性;进一步降低mCat/mCH_(4)到13.5时,CH_(4)转化率降至7%,但C2-C3选择性可达90%.要指出的是,C3产物中仅检测到了C3H6,其选择性约为5%.XRD(X-ray diffraction)分析表明,随着CL-OCM氧化-还原循环次数的增加,催化剂的载氧体逐渐由Mn_(2)O_(3)转变为Mn_(7)SiO_(12),同时伴随着CH_(4)转化率的逐渐下降及C2-C3选择性的不断提高直至稳定.基于上述认识,将Na_(2)WO_(4)/Mn_(2)O_(3)-SiO_(2)在800℃空气中直接焙烧,可一步制得Na_(2)WO_(4)/Mn_(7)SiO_(12)-SiO_(2)载氧体催化剂.相比于Mn_(2)O_(3),载氧体Mn_(7)SiO_(12)中的晶格氧活度较低,构建的Mn_(7)SiO_(12)■[MnSiO_(3)+MnWO_(4)]的氧化-还原循环可适度减缓晶格氧的释放速率,抑制了目标产物的深度氧化,从而获得了较高的C2-C3产物选择性,但CH_(4)转化率有所降低.上述研究结果对设计构建高效的CL-OCM载氧体催化剂具有借鉴意义. 展开更多
关键词 甲烷化偶联制乙烯 化学链 载氧体催化剂 晶格
下载PDF
化学链甲烷氧化偶联界面反应路径和晶格氧传递的分子动力学模拟 被引量:1
2
作者 李婉莹 陈良勇 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第6期820-830,共11页
本研究采用分子动力学模拟的方法计算八种金属氧化物催化剂-载氧体CL-OCM反应性能,并对性能最优的Mn_(2)O_(3)开展反应时间和颗粒尺寸的研究。结果表明,适当延长反应时间有利于提高C_(2)H_(4)选择性;C/O=1是Mn_(2)O_(3)的理想尺寸。基... 本研究采用分子动力学模拟的方法计算八种金属氧化物催化剂-载氧体CL-OCM反应性能,并对性能最优的Mn_(2)O_(3)开展反应时间和颗粒尺寸的研究。结果表明,适当延长反应时间有利于提高C_(2)H_(4)选择性;C/O=1是Mn_(2)O_(3)的理想尺寸。基于以上结果分析了Mn_(2)O_(3)CL-OCM界面反应路径和晶格氧传递问题,以揭示反应机理。CH_(3)^(*)气相二聚化生成C_(2)H6的是CL-OCM最主要的碳偶联路径。除此之外,还存在两条碳偶联路径,均由CH2^(*)引发。CH_(3)^(*)与OH^(*)表面结合生成甲醇是CL-OCM副反应的先决步骤,抑制甲醇生成是提高CL-OCM反应C_(2)选择性的关键。晶格氧存在转化,表面晶格氧是甲烷活化的活性氧。晶格氧数量差异及体相晶格氧迁移阻力差异是导致CH_(4)转化率和C_(2)选择性不同的主要原因。该研究为CL-OCM催化剂-载氧体的机理探究提供新的方法。 展开更多
关键词 化学链甲烷化偶联 催化剂- 分子动力学模拟 界面反应 晶格
下载PDF
Gold stabilized on various oxide supports catalyzing formaldehyde oxidation at room temperature 被引量:7
3
作者 陈冰冰 朱晓兵 +2 位作者 王宜迪 于丽梅 石川 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1729-1737,共9页
Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) ... Gold stabilized on reducible oxide (CeO2 and FeOx) and irreducible oxide (γ‐Al2O3, SiO2, and HZSM‐5) were prepared by deposition precipitation method and tested for catalytic oxidation of formaldehyde (HCHO) at room temperature under high GHSV of 600000 ml/(g&#183;s). Au/γ‐Al2O3 cata‐lyst showed distinctive catalytic performance, presenting the highest initial HCHO conversion and stability. Correlating the reaction rate with Au particle size, there is a linear relationship, suggesting that the smaller Au particle size with higher dispersion possesses high reactivity for HCHO oxida‐tion. All the catalysts deactivated at high GHSV (600000 ml/(g&#183;s)), but in a quite different rate. Re‐ducible oxide (CeO2 and FeOx) could stabilize gold through O linkage and therefore exhibits a better stability for HCHO oxidation reaction. However, the aggregation of gold particles occurred over Au/SiO2 and Au/HZSM‐5 catalysts, which result in the fast deactivation. Therefore, our results sug‐gest that the reducibility of the supports for Au catalysis has no direct influence on the activity, but affects the catalytic stability. 展开更多
关键词 Gold catalyst Oxide support Formaldehyde oxidation REDUCIBILITY Catalytic stability
下载PDF
Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane 被引量:5
4
作者 李伟作 赵忠奎 +1 位作者 焦艳华 王桂茹 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2122-2133,共12页
An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydr... An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydrothermal method and used as the support for a Ni catalyst for the dry reforming of methane (DRM) with CO2. ZrO2-ipch is a much better support than ZrO2-cs and the traditional ZrO2 irregular particles made by a simple precipitation method (ZrO2-ip). The supported Ni catalyst on ZrO2-ipch (Ni/ZrO2-ipch) exhibited outstanding catalytic activity and coke-resistant stability compared to the ones on ZrO2-cs (Ni/ZrO2-cs) and ZrO2-ip (Ni/ZrO2-ip). Ni/ZrO2-ip exhibited the worst catalytic performance. The origin of the significantly enhanced catalytic performance was revealed by characterization including XRD, N2 adsorption measurement (BET), TEM, H2-TPR, CO chemisorption, CO2-TPD, XPS and TGA. The superior catalytic activity of Ni/ZrO2-ipch to Ni/ZrO2-cs or Ni/ZrO2-ip was ascribed to a higher Ni dispersion, increased reducibility, enhanced oxygen mo- bility, and more basic sites with a higher strength, which were due to the unique hierarchically structural morphology of the ZrO2-ipch support. Ni/ZrO2-ipch exhibited better stability for the DRM reaction than Ni/ZrO2-ip, which was ascribed to its higher resistance to Ni sintering due to a strengthened metal-support interaction and the confinement effect of the mesopores and coke deposition resistance. The higher coking resistance of Ni/ZrO2-ipch for the DRM reaction in comparison with Ni/ZrOz-ip orignated from the coke-removalabitity of the higher amount of lattice oxygen and more basic sites, confirmed by XPS and CO2-TPD analysis, and the stabilized Ni on the Ni/ZrO2-ipch catalyst by the confinement effect of the mesopores of the hierarchical ZrO2-ipch sup- port. The superior catalytic performance and coking resistance of the Ni/ZrO2-ipch catalyst makes it a promising candidate for synthesis gas production from the DRM reaction. 展开更多
关键词 Ni-based catalystZrO2 supportHierarchical structure Morphology effect Dry reforming of methane Synthesis gas Coke resistance
下载PDF
Catalytic ativities of single-atom catalysts for CO oxidation: Pt_1/FeO_x vs. Fe_1/FeO_x 被引量:7
5
作者 Jinxia Liang Xiaofeng Yang +2 位作者 Congqiao Xu Tao Zhang Jun Li 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第9期1566-1573,共8页
An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other ... An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other FeOx supported transition metal systems both experimentally and theoretically.However,the FeOx substrate itself(denoted by Fe1/FeOx following the same nomenclature of Pt1/FeOx)as a typical transition metal oxide possesses a very low catalytic activity toward CO oxidation,although it can be viewed as Fe1/FeOx SAC.Here,to understand the catalytic mechanism of FeOx‐based SACs for CO oxidation,we have performed density functional theory calculations on Pt1/FeOx and Fe1/FeOx for CO oxidation to address the differences between these two SACs in terms of the catalytic mechanism of CO oxidation and the chemical behavior of the catalysts.Our calculation results indicated that the catalytic cycle of Fe1/FeOx is much more difficult to accomplish than that of SAC Pt1/FeOx because of a high activation barrier(1.09eV)for regeneration of the oxygen vacancy formed when the second CO2molecule desorbs from the surface.Moreover,density of states and Bader charge analysis revealed differences in the catalytic performance for CO oxidation by the SACs Fe1/FeOx and Pt1/FeOx.This work provides insights into the fundamental interactions between the single‐atom Pt1and FeOx substrate,and the exceptional catalytic performance of this system for CO oxidation. 展开更多
关键词 Single‐atom catalyst FeOx substrate Density functional theory Heterogeneous catalysis CO oxidation
下载PDF
Three-dimensionally ordered macroporous CeO_2/Al_2O_3-supported Au nanoparticle catalysts: Effects of CeO_2 nanolayers on catalytic activity in soot oxidation 被引量:5
6
作者 Baofang Jin Yuechang Wei +5 位作者 Zhen Zhao Jian Liu Yazhao Li Renjie Li Aijun Duan Guiyuan Jiang 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第9期1629-1641,共13页
A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These c... A series of catalysts consisting of three‐dimensionally ordered macroporous(3DOM)x‐CeO2/Al2O3‐supported Au nanoparticles(x=2,10,20,and40wt%)were successfully synthesized using a reduction‐deposition method.These catalysts were characterized using scanning electron microscopy,the Brunauer‐Emmett‐Teller method,X‐ray diffraction,transmission electron microscopy,ultraviolet‐visible spectroscopy,and temperature‐programmed reduction by H2.Au nanoparticles of mean particle size5nm were well dispersed and supported on the inner walls of uniform macropores.The3DOM structure improved the contact efficiency between soot and the catalyst.An Al‐Ce‐O solid solution was formed in the multilayer support,i.e.,x‐CeO2/Al2O3,by the incorporation of Al3+ions into the CeO2lattice,which resulted in the creation of extrinsic oxygen vacancies.Strong interactions between the metal(Au)and the support(Ce)increased the amount of active oxygen species,and this promoted soot oxidation.The catalytic performance in soot combustion was evaluated using a temperature‐programmed oxidation technique.The presence of CeO2nanolayers in the3DOM Au/x‐CeO2/Al2O3catalysts clearly improved the catalytic activities in soot oxidation.Among the prepared catalysts,3DOM Au/20%CeO2/Al2O3showed high catalytic activity and stability in diesel soot oxidation. 展开更多
关键词 Three‐dimensionally ordered macroporous material Gold nanoparticle Multilayer support CeO2 nanolayer Soot combustion
下载PDF
Correlation between catalytic activity of supported gold catalysts for carbon monoxide oxidation and metal–oxygen binding energy of the support metal oxides 被引量:3
7
作者 Takashi Fujita Masanori Horikawa +2 位作者 Takashi Takei Tom Murayama Masatake Haruta 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1651-1655,共5页
The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under id... The effect of a wide variety of metal oxide (MOx) supports has been discussed for CO oxidation on nanoparticulate gold catalysts. By using typical co‐precipitation and deposition–precipitation methods and under identical calcination conditions, supported gold catalysts were prepared on a wide variety of MOx supports, and the temperature for 50%conversion was measured to qualita‐tively evaluate the catalytic activities of these simple MOx and supported Au catalysts. Furthermore, the difference in these temperatures for the simple MOx compared to the supported Au catalysts is plotted against the metal–oxygen binding energies of the support MOx. A clear volcano‐like correla‐tion between the temperature difference and the metal–oxygen binding energies is observed. This correlation suggests that the use of MOx with appropriate metal–oxygen binding energies (300–500 kJ/atom O) greatly improves the catalytic activity of MOx by the deposition of Au NPs. 展开更多
关键词 Metal oxide-supported gold nanoparticle catalyst Support effects Carbon monoxide oxidation Volcano-like correlation Metal-oxygen binding energy
下载PDF
Kinetic modelling of NO+CO reaction on Pt/MoO_x/Al_2O_3 catalyst
8
作者 焦宇兵 孙寿家 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第2期151-153,共3页
A mathematical model has been developed to describe the dynamic behaviours of NO+CO reaction on supported Pt MO catalyst. The ignited state kinetics can be fit quantitatively using directly a Langmuir Henshelwood bimo... A mathematical model has been developed to describe the dynamic behaviours of NO+CO reaction on supported Pt MO catalyst. The ignited state kinetics can be fit quantitatively using directly a Langmuir Henshelwood bimolecular rate expression with a heat of adsorption of NO of 32 4 kJ/mol and of CO of 106 7 kJ/mol, respectively. 展开更多
关键词 modelling mechanism NO CO platinum catalyst
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部