This study was conducted in Mgbede, River State, Nigeria, hosting up to, or even more than 100 oil wells. It examined the relationship between the bearing capacity of crude oil contaminated soil and the percentage con...This study was conducted in Mgbede, River State, Nigeria, hosting up to, or even more than 100 oil wells. It examined the relationship between the bearing capacity of crude oil contaminated soil and the percentage contamination. Four uncontaminated soil samples were randomly collected at 1.5 m depth within the oil field with hand auger and analyzed for the load bearing properties limited to cohesion, angle of internal friction and bulk density. With these parameters, the bearing capacity was determined for each sample. Crude oil, collected from one of the oil wells with viscosity 0.02611 poises at 40~C and specific gravity 0.8227 g/cm3, was used as the contaminant. This was mixed with the soil sample at 5%, 10%, 15% and 20% concentrations. The mean values of the bearing capacity were 582.458 KN/m2, 495.35 KN/m2 for square and strip footings respectively at 0% contamination, 240.735 KN/m2 and 204.753 KN/m2 at 5%, 321.683 KN/m2 and 274.593 KN/m2 at 10%, 127.003 KN/m2 and 109.12 KN/m2 at 15%, 105.28 KN/m2 and 90.758 KN/m2 at 20% for square and strip footings, respectively. The results showed a consistent decrease in the load bearing values as the crude oil content increased. The result of the null hypothesis established a strong and significant relationship between the bearing capacity of crude oil contaminated soil and the percentage contamination.展开更多
提出了无人机油箱地面洗涤惰化技术理论和方法,利用CFD方法研究了采用地面洗涤惰化技术降低油箱气相空间氧体积分数并使无人机油箱在地面和飞行条件下仍然保持惰化状态的可行性。利用vol⁃ume of fluid(VOF)两相流模型和自定义传质方程...提出了无人机油箱地面洗涤惰化技术理论和方法,利用CFD方法研究了采用地面洗涤惰化技术降低油箱气相空间氧体积分数并使无人机油箱在地面和飞行条件下仍然保持惰化状态的可行性。利用vol⁃ume of fluid(VOF)两相流模型和自定义传质方程计算了不同油箱初始氧体积分数和载油率下气相空间氧体积分数的变化情况,结果表明:在相同的飞行时间,气相空间氧体积分数随着初始载油率和油箱初始氧体积分数的增加而增加;当油箱初始氧体积分数不高于2%,且初始载油率不高于50%时,飞行过程中油箱气相空间氧体积分数始终低于9%,满足军用飞机油箱惰化要求。研究可为无人机油箱地面洗涤惰化边界设计提供参考。展开更多
文摘This study was conducted in Mgbede, River State, Nigeria, hosting up to, or even more than 100 oil wells. It examined the relationship between the bearing capacity of crude oil contaminated soil and the percentage contamination. Four uncontaminated soil samples were randomly collected at 1.5 m depth within the oil field with hand auger and analyzed for the load bearing properties limited to cohesion, angle of internal friction and bulk density. With these parameters, the bearing capacity was determined for each sample. Crude oil, collected from one of the oil wells with viscosity 0.02611 poises at 40~C and specific gravity 0.8227 g/cm3, was used as the contaminant. This was mixed with the soil sample at 5%, 10%, 15% and 20% concentrations. The mean values of the bearing capacity were 582.458 KN/m2, 495.35 KN/m2 for square and strip footings respectively at 0% contamination, 240.735 KN/m2 and 204.753 KN/m2 at 5%, 321.683 KN/m2 and 274.593 KN/m2 at 10%, 127.003 KN/m2 and 109.12 KN/m2 at 15%, 105.28 KN/m2 and 90.758 KN/m2 at 20% for square and strip footings, respectively. The results showed a consistent decrease in the load bearing values as the crude oil content increased. The result of the null hypothesis established a strong and significant relationship between the bearing capacity of crude oil contaminated soil and the percentage contamination.
文摘提出了无人机油箱地面洗涤惰化技术理论和方法,利用CFD方法研究了采用地面洗涤惰化技术降低油箱气相空间氧体积分数并使无人机油箱在地面和飞行条件下仍然保持惰化状态的可行性。利用vol⁃ume of fluid(VOF)两相流模型和自定义传质方程计算了不同油箱初始氧体积分数和载油率下气相空间氧体积分数的变化情况,结果表明:在相同的飞行时间,气相空间氧体积分数随着初始载油率和油箱初始氧体积分数的增加而增加;当油箱初始氧体积分数不高于2%,且初始载油率不高于50%时,飞行过程中油箱气相空间氧体积分数始终低于9%,满足军用飞机油箱惰化要求。研究可为无人机油箱地面洗涤惰化边界设计提供参考。