Band engineering based on the construction of solid solutions is an effective approach to enhance the efficiency of semiconductor photocatalysts, via which the balance between light absorption and driving force can be...Band engineering based on the construction of solid solutions is an effective approach to enhance the efficiency of semiconductor photocatalysts, via which the balance between light absorption and driving force can be well achieved by continuously tuning the band structure. Here the ZnS1–xSex nanobelt solid solutions have been prepared via thermal treatment of ZnS1–xSex(en)0.5 precursors. The compositions are adjusted by changing the mole ratio of Se to S powder in the starting materials, resulting in continuously modulating the alignment of energy levels of the obtained solid solutions. The band structure is also studied via theoretical calculation. Accordingly, the light harvesting can be tuned too, as confirmed by the UV-vis absorption spectra. XPS valence spectra are used to determine the valence band maximum. Transient photoluminescence spectra are employed to study the separation of photogenerated charge carriers. BET specific surface area and CO2 adsorption isotherms of different catalysts are measured. The obtained ZnS1–xSex nanobelts exhibit different photocatalytic activity for solar-fuel production, dependent on many factors like the light harvesting and alignment of energy levels. The related mechanism is studied in detail.展开更多
CdZnTe is an excellent material candidate for high efficiency,high-resolution room-temperature nuclear radiation detectors,and the CdZnTe detectors are being widely used in medicine,industry,safeguard and scientific X...CdZnTe is an excellent material candidate for high efficiency,high-resolution room-temperature nuclear radiation detectors,and the CdZnTe detectors are being widely used in medicine,industry,safeguard and scientific X-ray and γ-ray imaging and spectroscopic applications.In this work,three CdZnTe planar detectors with different grades,named CZT-1,CZT-2 and CZT-3,respectively,were fabricated.And the effects of mobility,lifetime and de-trapping time on the performance of CdZnTe planar detector,such as the energy resolution,charge collection efficiency and peak to valley ratio,were analyzed.The charge collection efficiency depends on the product of carrier mobility and lifetime,which has a great effect on the energy resolution of detector when the efficiency is less than 90%.The de-trapping time of carriers in deep levels should be responsible for the peak to valley ratio and "polarization".展开更多
文摘Band engineering based on the construction of solid solutions is an effective approach to enhance the efficiency of semiconductor photocatalysts, via which the balance between light absorption and driving force can be well achieved by continuously tuning the band structure. Here the ZnS1–xSex nanobelt solid solutions have been prepared via thermal treatment of ZnS1–xSex(en)0.5 precursors. The compositions are adjusted by changing the mole ratio of Se to S powder in the starting materials, resulting in continuously modulating the alignment of energy levels of the obtained solid solutions. The band structure is also studied via theoretical calculation. Accordingly, the light harvesting can be tuned too, as confirmed by the UV-vis absorption spectra. XPS valence spectra are used to determine the valence band maximum. Transient photoluminescence spectra are employed to study the separation of photogenerated charge carriers. BET specific surface area and CO2 adsorption isotherms of different catalysts are measured. The obtained ZnS1–xSex nanobelts exhibit different photocatalytic activity for solar-fuel production, dependent on many factors like the light harvesting and alignment of energy levels. The related mechanism is studied in detail.
基金supported by the National Instrumentation Program (GrantNo. 2011YQ040082)the National Natural Science Foundation of China(Grant Nos. 50902113,50902114)+3 种基金Program for New Century Excellent Talents in University (Grant No. NCET-10-0076)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB610406)the"111" Project of China (Grant No. B08040)NPU Foundation for Fundamental Research (Grant No. JC20100228)
文摘CdZnTe is an excellent material candidate for high efficiency,high-resolution room-temperature nuclear radiation detectors,and the CdZnTe detectors are being widely used in medicine,industry,safeguard and scientific X-ray and γ-ray imaging and spectroscopic applications.In this work,three CdZnTe planar detectors with different grades,named CZT-1,CZT-2 and CZT-3,respectively,were fabricated.And the effects of mobility,lifetime and de-trapping time on the performance of CdZnTe planar detector,such as the energy resolution,charge collection efficiency and peak to valley ratio,were analyzed.The charge collection efficiency depends on the product of carrier mobility and lifetime,which has a great effect on the energy resolution of detector when the efficiency is less than 90%.The de-trapping time of carriers in deep levels should be responsible for the peak to valley ratio and "polarization".