Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minor...Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for widescale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.展开更多
Tin sulfide (SnS) has analogous structural features to tin selenide (SnSe), but contains more abundant resources as compared with SnSe. SnS has elicited attention as a potential eco-friendly therm oelectric (TE) mater...Tin sulfide (SnS) has analogous structural features to tin selenide (SnSe), but contains more abundant resources as compared with SnSe. SnS has elicited attention as a potential eco-friendly therm oelectric (TE) material. However, the intrinsic carrier concentration of SnS is very low, thereby hindering the performance improvement of the material. This study proposes that the TE properties of polycrystalline Nadoped SnS (synthesized through an improved chemical coprecipitation) can be significantly enhanced. The maximum power factor (PF) of 362 μW m^-1K^-2 at 873 K was achieved, presenting a state-of-the-art value for the polycrystalline SnS. Considering the merits of the improved electrical properties and lower thermal conductivity of SnS, the highest ZT was up to 0.52 at 873 K even without intentional chemical doping. This study offers an effective approach for improving the PF to achieve high ZT in SnS. Hence, we expect that this new perspective can be extended to other dopants and broaden the scope of synthesis technology.展开更多
文摘Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for widescale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.
基金supported by the National Key R&D Program of China (2018YFB0703603)the Basic Science Center Project of National Natural Science Foundation of China (NSFC, 51788104)the NSFC (11474176)
文摘Tin sulfide (SnS) has analogous structural features to tin selenide (SnSe), but contains more abundant resources as compared with SnSe. SnS has elicited attention as a potential eco-friendly therm oelectric (TE) material. However, the intrinsic carrier concentration of SnS is very low, thereby hindering the performance improvement of the material. This study proposes that the TE properties of polycrystalline Nadoped SnS (synthesized through an improved chemical coprecipitation) can be significantly enhanced. The maximum power factor (PF) of 362 μW m^-1K^-2 at 873 K was achieved, presenting a state-of-the-art value for the polycrystalline SnS. Considering the merits of the improved electrical properties and lower thermal conductivity of SnS, the highest ZT was up to 0.52 at 873 K even without intentional chemical doping. This study offers an effective approach for improving the PF to achieve high ZT in SnS. Hence, we expect that this new perspective can be extended to other dopants and broaden the scope of synthesis technology.