Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effect...Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef- fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency.展开更多
The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solutio...The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solution as the stripping solution,and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester(P507)dissolved in kerosene as the membrane solution.The effects of pH value,initial concentration of Eu3 +and different ionic strength in the feed phase,volume ratio of membrane solution to stripping solution,concentration of HCl solution, concentration of carrier,different stripping agents in the dispersion phase on the separation are investigated.The optimum condition for separation of Eu3 +is that concentration of HCl solution is 4.0 mol·L 1,concentration of carrier is 0.16 mol·L 1,and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase.The ionic strength has no significant effect on separation of Eu3 +.Under the optimum condition,when the initial concentration of Eu3 +is 0.8×10 4mol·L 1,the separation percentage of Eu 3+is 95.3%during the separation time of 130 min.The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry.The diffusion coefficient of Eu3 +in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×10 7m 2·s 1and 36.6μm,respectively.The results obtained are in good agreement with literature data.展开更多
基金Supported by the National Natural Science Foundation of China (20676023)
文摘Recovery of copper ions from wastewater using a hollow fiber supported emulsion liquid membrane (HFSELM) was studied with LIX984N as carrier, kerosene as diluents, and sulfuric acid solution as stripping phase. Effects of compositions of feed and emulsion liquid phase, flow rates on both sides of membrane, and hollow fiber module parameters were investigated. The stability of the emulsion liquid phase without surfactant and the effect of buffer in the feed phase on the extraction rate were also evaluated. It is found that the stability of the emulsion phase without surfactant is poor. Higher flow velocity gives shorter residence time for the emulsion liquid phase on the tube side, reducing the effect of particle coalescence on the separation process. The extraction rate increases with the increase of feed phase pH, carrier concentration, hydrogen ion concentration in the stripping phase, and ef- fective hollow fiber area. The phase ratio in the emulsion liquid phase has a negative effect on extraction rate. The flow rates on both sides have little influence on the extraction performance of the HFSELM, while buffer addition in the feed solution improves the extraction efficiency.
基金Supported by the National Natural Science Foundation of China(90401009) the Foundation for Planning Project of West Action of Chinese Academy of Sciences(KZCX2-XB2-13) the Research Fund for Excellent Doctoral Thesis of Xi’an University of Technology(602-210805)
文摘The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solution as the stripping solution,and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester(P507)dissolved in kerosene as the membrane solution.The effects of pH value,initial concentration of Eu3 +and different ionic strength in the feed phase,volume ratio of membrane solution to stripping solution,concentration of HCl solution, concentration of carrier,different stripping agents in the dispersion phase on the separation are investigated.The optimum condition for separation of Eu3 +is that concentration of HCl solution is 4.0 mol·L 1,concentration of carrier is 0.16 mol·L 1,and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase.The ionic strength has no significant effect on separation of Eu3 +.Under the optimum condition,when the initial concentration of Eu3 +is 0.8×10 4mol·L 1,the separation percentage of Eu 3+is 95.3%during the separation time of 130 min.The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry.The diffusion coefficient of Eu3 +in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×10 7m 2·s 1and 36.6μm,respectively.The results obtained are in good agreement with literature data.