Reynold's averaged Navier-Stokes based CFD (computational fluid dynamics) technique WISDAM developed at The University of Tokyo is used to investigate and compare the hydrodynamic loads on container ship models SR1...Reynold's averaged Navier-Stokes based CFD (computational fluid dynamics) technique WISDAM developed at The University of Tokyo is used to investigate and compare the hydrodynamic loads on container ship models SR108 and KCS in 120 degree regular oblique wave conditions. WISDAM has the capability of handling 6DOF (six degrees of freedom) in ship motions. Finite volume method with structured and overlapping grid system is employed. The flow variables are described in staggered manner, i.e., velocity components arc defined at the face center while pressure is at the cell center. Computational results agree favorably well with existing towing tank results especially for ship motions. Computational results also show that ship with bulbous bow experience higher hydrodynamic loads on bow section.展开更多
A fast motion estimation algorithm for variable block-size using the "line scan and block merge procedure" is proposed for airborne image compression modules.Full hardware implementation via FPGA is discussed in det...A fast motion estimation algorithm for variable block-size using the "line scan and block merge procedure" is proposed for airborne image compression modules.Full hardware implementation via FPGA is discussed in detail.The proposed pipelined architecture based on the line scan algorithm is capable of calculating the required 41 motion vectors of various size blocks supported by H.264 within a 16 × 16 block in parallel.An adaptive rate distortion cost function is used for various size block decision.The motion vectors of adjacent small blocks are merged to predict the motion vectors of larger blocks for reducing computation.Experimental results show that our proposed method has lower computational complexity than full search algorithm with slight quality decrease and little bit rate increase.Due to the high real-time processing speed it can be easily realized in hardware.展开更多
Two types of Mg-Cu composition system graded density impactors used for complex loading (shock loading and quasi-isentropic compression) are designed by the elastic-plastic hydrodynamic method in this paper. Mixture...Two types of Mg-Cu composition system graded density impactors used for complex loading (shock loading and quasi-isentropic compression) are designed by the elastic-plastic hydrodynamic method in this paper. Mixtures of metal powders in the Mg-Cu system are cast into a series of 17 and 25 uniform compositions ranging from 100% Mg to 100% Cu. The graded den- sity impactors are launched to the stationary 10 Ixm aluminum film and 12 mm LiF window targets by a two-stage light-gas gun in the National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, and the resulting wave profiles are measured with the DISAR system. Hydrodynamic simulation results are perfectly consistent with the experiments. Our work in this paper will set up a foundation for further research of controllable loading/releasing routes and rate experiments in the future.展开更多
文摘Reynold's averaged Navier-Stokes based CFD (computational fluid dynamics) technique WISDAM developed at The University of Tokyo is used to investigate and compare the hydrodynamic loads on container ship models SR108 and KCS in 120 degree regular oblique wave conditions. WISDAM has the capability of handling 6DOF (six degrees of freedom) in ship motions. Finite volume method with structured and overlapping grid system is employed. The flow variables are described in staggered manner, i.e., velocity components arc defined at the face center while pressure is at the cell center. Computational results agree favorably well with existing towing tank results especially for ship motions. Computational results also show that ship with bulbous bow experience higher hydrodynamic loads on bow section.
基金Supported by the Aviation Science Fund of China(2009ZC15001)
文摘A fast motion estimation algorithm for variable block-size using the "line scan and block merge procedure" is proposed for airborne image compression modules.Full hardware implementation via FPGA is discussed in detail.The proposed pipelined architecture based on the line scan algorithm is capable of calculating the required 41 motion vectors of various size blocks supported by H.264 within a 16 × 16 block in parallel.An adaptive rate distortion cost function is used for various size block decision.The motion vectors of adjacent small blocks are merged to predict the motion vectors of larger blocks for reducing computation.Experimental results show that our proposed method has lower computational complexity than full search algorithm with slight quality decrease and little bit rate increase.Due to the high real-time processing speed it can be easily realized in hardware.
基金supported by the National Natural Science Foundation of China (Grant No. 11072228, 11002129)the Science Foundation of China Academy of Engineering Physics (Grant No. 2011B0202005)+1 种基金the Open Foundation of State Key Laboratory of Explosion Science and Technology(Grant No. KFJJ09-06)the Open Foundation of State Key Laboratory of Advanced Technology for Materials Synthesis and Process-ing, Wuhan University of Technology
文摘Two types of Mg-Cu composition system graded density impactors used for complex loading (shock loading and quasi-isentropic compression) are designed by the elastic-plastic hydrodynamic method in this paper. Mixtures of metal powders in the Mg-Cu system are cast into a series of 17 and 25 uniform compositions ranging from 100% Mg to 100% Cu. The graded den- sity impactors are launched to the stationary 10 Ixm aluminum film and 12 mm LiF window targets by a two-stage light-gas gun in the National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, and the resulting wave profiles are measured with the DISAR system. Hydrodynamic simulation results are perfectly consistent with the experiments. Our work in this paper will set up a foundation for further research of controllable loading/releasing routes and rate experiments in the future.