The iron-loaded organic phase of naphthenic acid-isooctyl alcohol-kerosene was prepared, and the process kinetics of hydrothermal stripping of iron from the phase was studied. Several factors affecting hydrothermal st...The iron-loaded organic phase of naphthenic acid-isooctyl alcohol-kerosene was prepared, and the process kinetics of hydrothermal stripping of iron from the phase was studied. Several factors affecting hydrothermal stripping, such as the polymer of naphthenic acid, initial concentrations of iron and naphthenic acid, temperature and agitation time, were investigated, and based on experimental results and theoretical analysis, two kinetic models were established.The stripping rate equation suggests that the hydrothermal stripping process activation energy is 96.4 kJ·mol-1 and the stripping is controlled by hydrolysis of naphthenic complex of iron. The values calculated by the stripping fraction equation comparatively accord with the experimental data.展开更多
To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandston...To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed.展开更多
This study aimed to evaluate the external and internal fluxes of nutrients of an urban eutrophic reservoir (lbirit6 reservoir, SE-Brazil). External loads were estimated in the tributaries (Pintados and Ibirit6 cre...This study aimed to evaluate the external and internal fluxes of nutrients of an urban eutrophic reservoir (lbirit6 reservoir, SE-Brazil). External loads were estimated in the tributaries (Pintados and Ibirit6 creeks) through nutrient concentrations and discharge measurements. Using Fick's law, internal loads were estimated in the reservoir from fluxes across sediment-water interface from nutrient concentration gradients between the pore water and the water. The Ibirit6 creek (urban sewage recipient) contributes with 72%-47% of ammonium (NH4^+) and 100%-8% of SRP (soluble reactive phosphorus) of the total quantity entering the reservoir, whereas the Pintados creek (oil refinery effluent recipient) contributions are 20%-19% and 44%-100%, respectively. Despite the high external loads (130 and 2.2 ton-yr^-1 of NH4+ and SRP, respectively), internal loads (average flux of 120 and 2 mg·cm^-2yr^-1, respectively) correspond to 25% of the total external loads which may sustain a high productivity in the reservoir for a long time even if the external loads are controlled. The stocks of ammonium and SRP of the interstitial water (100 cm of sediment) would be released to the water in six years and five months, respectively, The release time would be extremely larger (〉 3,000 years) considering the stocks of total N and bioavailable P.展开更多
基金Supported by National Natural Science Foundation of China (No.20276074)
文摘The iron-loaded organic phase of naphthenic acid-isooctyl alcohol-kerosene was prepared, and the process kinetics of hydrothermal stripping of iron from the phase was studied. Several factors affecting hydrothermal stripping, such as the polymer of naphthenic acid, initial concentrations of iron and naphthenic acid, temperature and agitation time, were investigated, and based on experimental results and theoretical analysis, two kinetic models were established.The stripping rate equation suggests that the hydrothermal stripping process activation energy is 96.4 kJ·mol-1 and the stripping is controlled by hydrolysis of naphthenic complex of iron. The values calculated by the stripping fraction equation comparatively accord with the experimental data.
基金Projects(41972283,41630642)supported by the National Natural Science Foundation of ChinaProject(51927808)supported by the National Key Scientific Instrument and Equipment Development,ChinaProject(CX2018B066)supported by the Hunan Provincial Innovation Foundation for Postgraduate,China。
文摘To study the tensile strength and failure mechanisms of rock with hydro-thermal coupling damage under different loading rates,a series of static and dynamic splitting tests were conducted on thermally treated sandstone under dry and water-saturated conditions.Experimental results showed that high temperatures effectively weakened the tensile strength of sandstone specimens,and the P-wave velocity declined with increasing temperature.Overall,thermal damage of rock increased gradually with increasing temperature,but obvious negative damage appeared at the temperature of 100℃.The water-saturated sandstone specimens had lower indirect tensile strength than the dry ones,which indicated that water-rock interaction led to secondary damage in heat-treated rock.Under both dry and water-saturated conditions,the dynamic tensile strength of sandstone increased with the increase of strain rate.The water-saturated rock specimens showed stronger rate dependence than the dry ones,but the loading rate sensitivity of thermally treated rock decreased with increasing treatment temperature.With the help of scanning electron microscopy technology,the thermal fractures of rock,caused by extreme temperature,were analyzed.Hydro-physical mechanisms of sandstone under different loading rate conditions after heat treatment were further discussed.
文摘This study aimed to evaluate the external and internal fluxes of nutrients of an urban eutrophic reservoir (lbirit6 reservoir, SE-Brazil). External loads were estimated in the tributaries (Pintados and Ibirit6 creeks) through nutrient concentrations and discharge measurements. Using Fick's law, internal loads were estimated in the reservoir from fluxes across sediment-water interface from nutrient concentration gradients between the pore water and the water. The Ibirit6 creek (urban sewage recipient) contributes with 72%-47% of ammonium (NH4^+) and 100%-8% of SRP (soluble reactive phosphorus) of the total quantity entering the reservoir, whereas the Pintados creek (oil refinery effluent recipient) contributions are 20%-19% and 44%-100%, respectively. Despite the high external loads (130 and 2.2 ton-yr^-1 of NH4+ and SRP, respectively), internal loads (average flux of 120 and 2 mg·cm^-2yr^-1, respectively) correspond to 25% of the total external loads which may sustain a high productivity in the reservoir for a long time even if the external loads are controlled. The stocks of ammonium and SRP of the interstitial water (100 cm of sediment) would be released to the water in six years and five months, respectively, The release time would be extremely larger (〉 3,000 years) considering the stocks of total N and bioavailable P.