A highly reliable, quantitative and sensitive analytical method for determining the residues of the fungicide, hexaconazole in black tea is described. The proposed method is based on liquid-liquid extraction followed ...A highly reliable, quantitative and sensitive analytical method for determining the residues of the fungicide, hexaconazole in black tea is described. The proposed method is based on liquid-liquid extraction followed by gas chromatographic determination, using nitrogen phosphorus detector (GC-NPD) for the identification and quantitation of hexaconazole. The most appropriate solvent mixture for extracting hexaconazole residues from black tea was n-hexane:acetone at 1:1 (v/v). The extract was cleaned up by adsorption column chromatography using activated florisil. Performance of the method was assessed by evaluating quality parameters such as recovery value, repeatability, reproducibility, linearity and limits of detection and quantitation. When the method was assessed for repeatability, the percentage of recovery ranged between 86% and 96% while the relative standard deviation was between 0.30% and 2.35%. In studies on reproducibility the recovery ranged from 81% to 85% and relative standard deviation from 1.68% to 5.13%, implying that the method was reliable. A field trial was conducted to verify the application of this method with real samples. Results prove that the validated method was suitable for extracting hexaconazole residues.展开更多
Infectious diseases result from the interactions of host, pathogens, and, in the case of vector-borne diseases, also vec- tors. The interactions involve physiological and ecological mechanisms and they have evolved un...Infectious diseases result from the interactions of host, pathogens, and, in the case of vector-borne diseases, also vec- tors. The interactions involve physiological and ecological mechanisms and they have evolved under a given set of environmental conditions. Environmental change, therefore, will alter host-pathogen-vector interactions and, consequently, the distribution, in- tensity, and dynamics of infectious diseases. Here, we review how climate change may impact infectious diseases of aquatic and terrestrial wildlife. Climate change can have direct impacts on distribution, life cycle, and physiological status of hosts, pathogens and vectors. While a change in either host, pathogen or vector does not necessarily translate into an alteration of the disease, it is the impact of climate change on the interactions between the disease components which is particularly critical for altered disease risks. Finally, climate factors can modulate disease through modifying the ecological networks host-pathogen-vector systems are belonging to, and climate change can combine with other environmental stressors to induce cumulative effects on infectious dis- eases. Overall, the influence of climate change on infectious diseases involves different mechanisms, it can be modulated by phenotypic acclimation and/or genotypic adaptation, it depends on the ecological context of the host-pathogen-vector interactions, and it can be modulated by impacts of other stressors. As a consequence of this complexity, non-linear responses of disease sys- tems under climate change are to be expected. To improve predictions on climate change impacts on infectious disease, we sug- gest that more emphasis should be given to the integration of biomedical and ecological research for studying both the physio- logical and ecological mechanisms which mediate climate change impacts on disease, and to the development of harmonized methods and approaches to obtain more comparable results, as this would support the discrimination of case-specific versus gen- eral mechanisms .展开更多
基金Project supported by the National Tea Research Foundation, Kolkata,India
文摘A highly reliable, quantitative and sensitive analytical method for determining the residues of the fungicide, hexaconazole in black tea is described. The proposed method is based on liquid-liquid extraction followed by gas chromatographic determination, using nitrogen phosphorus detector (GC-NPD) for the identification and quantitation of hexaconazole. The most appropriate solvent mixture for extracting hexaconazole residues from black tea was n-hexane:acetone at 1:1 (v/v). The extract was cleaned up by adsorption column chromatography using activated florisil. Performance of the method was assessed by evaluating quality parameters such as recovery value, repeatability, reproducibility, linearity and limits of detection and quantitation. When the method was assessed for repeatability, the percentage of recovery ranged between 86% and 96% while the relative standard deviation was between 0.30% and 2.35%. In studies on reproducibility the recovery ranged from 81% to 85% and relative standard deviation from 1.68% to 5.13%, implying that the method was reliable. A field trial was conducted to verify the application of this method with real samples. Results prove that the validated method was suitable for extracting hexaconazole residues.
文摘Infectious diseases result from the interactions of host, pathogens, and, in the case of vector-borne diseases, also vec- tors. The interactions involve physiological and ecological mechanisms and they have evolved under a given set of environmental conditions. Environmental change, therefore, will alter host-pathogen-vector interactions and, consequently, the distribution, in- tensity, and dynamics of infectious diseases. Here, we review how climate change may impact infectious diseases of aquatic and terrestrial wildlife. Climate change can have direct impacts on distribution, life cycle, and physiological status of hosts, pathogens and vectors. While a change in either host, pathogen or vector does not necessarily translate into an alteration of the disease, it is the impact of climate change on the interactions between the disease components which is particularly critical for altered disease risks. Finally, climate factors can modulate disease through modifying the ecological networks host-pathogen-vector systems are belonging to, and climate change can combine with other environmental stressors to induce cumulative effects on infectious dis- eases. Overall, the influence of climate change on infectious diseases involves different mechanisms, it can be modulated by phenotypic acclimation and/or genotypic adaptation, it depends on the ecological context of the host-pathogen-vector interactions, and it can be modulated by impacts of other stressors. As a consequence of this complexity, non-linear responses of disease sys- tems under climate change are to be expected. To improve predictions on climate change impacts on infectious disease, we sug- gest that more emphasis should be given to the integration of biomedical and ecological research for studying both the physio- logical and ecological mechanisms which mediate climate change impacts on disease, and to the development of harmonized methods and approaches to obtain more comparable results, as this would support the discrimination of case-specific versus gen- eral mechanisms .