碲化铋禁带宽度非常窄而具有高电导率和塞贝克系数,同时具有低热导率,成为已知室温下优值系数最高的热电材料。已有研究表明,纳米薄膜和超晶格是进一步提高材料热电性能的可行途径。因此超快研究碲化铋纳米薄膜中载能子间的相互作用过...碲化铋禁带宽度非常窄而具有高电导率和塞贝克系数,同时具有低热导率,成为已知室温下优值系数最高的热电材料。已有研究表明,纳米薄膜和超晶格是进一步提高材料热电性能的可行途径。因此超快研究碲化铋纳米薄膜中载能子间的相互作用过程对开发高性能热电材料有重要意义。本文采用飞秒激光泵浦-探测技术,实验研究了沉积在硅基底上厚度为100 nm碲化铋薄膜中各载能粒子的相互作用过程。通过改变延迟时间步长,分别观察到价带电子被光子激发跃迁至导带,激发电子在导带内与声子的能量弛豫及导带电子与空穴复合跃迁至价带,并将能量传递给声子导致声子温度升高的过程。此外,还观察到热应力产生的声波,并据此得到了碲化铋薄膜中纵波声速为2649 m s^(-1)。展开更多
Chitosan is a natural cationic polysaccharide, which is often used for preparing biomedical materials because of its high biocompatibility. In this study, chitosan with a molecular weight of 160 kDa was chosen to prep...Chitosan is a natural cationic polysaccharide, which is often used for preparing biomedical materials because of its high biocompatibility. In this study, chitosan with a molecular weight of 160 kDa was chosen to prepare chitosan nanoparticles (CSNPs) as gene vectors by ionic cross-linking with tripolyphosphate (TPP). CSNPs were characterized in terms of particle size, zeta potential, and polydispersity index (PDI) using a Zetasizer, and morphology was evaluated by transmission electron microscopy (TEM). Furthermore, the cytotoxicity and biocompatibility of CSNPs were correspondingly examined by a 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and histological examination. Agarose gel electrophoresis and UV spectrophotometric methods were performed to measure the loading capacity. The cell transfection efficiency of CSNPs loaded with plasmids or siRNA was analyzed by fluorescence microscopy or laser scanning confocal microscopy. The results showed that CSNPs were prepared successfully by the ionic gelation method, which had a smaller partcticle size (100 nm-200 nm), stable dispersibility, low cytotoxicity, good tissue-biocompatibility, and high gene-loading efficiency. These CSNPs could transfer the plasmids or siRNA to cells. However, CSNPs might have a much higher transfection efficiency for siRNAs than for plasmids, which implies that CSNPs might be a safer and more efficient vector for delivering siRNAs rather than plasmids.展开更多
文摘碲化铋禁带宽度非常窄而具有高电导率和塞贝克系数,同时具有低热导率,成为已知室温下优值系数最高的热电材料。已有研究表明,纳米薄膜和超晶格是进一步提高材料热电性能的可行途径。因此超快研究碲化铋纳米薄膜中载能子间的相互作用过程对开发高性能热电材料有重要意义。本文采用飞秒激光泵浦-探测技术,实验研究了沉积在硅基底上厚度为100 nm碲化铋薄膜中各载能粒子的相互作用过程。通过改变延迟时间步长,分别观察到价带电子被光子激发跃迁至导带,激发电子在导带内与声子的能量弛豫及导带电子与空穴复合跃迁至价带,并将能量传递给声子导致声子温度升高的过程。此外,还观察到热应力产生的声波,并据此得到了碲化铋薄膜中纵波声速为2649 m s^(-1)。
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2014HP011)Qingdao Young Scientist Applied Basic Research Fund(No.15-9-1-51-jch)+1 种基金Youth Foundation of The Affiliated Hospital of Qingdao University(No.2417)the National Natural Science Foundation of China(No.81401899)
文摘Chitosan is a natural cationic polysaccharide, which is often used for preparing biomedical materials because of its high biocompatibility. In this study, chitosan with a molecular weight of 160 kDa was chosen to prepare chitosan nanoparticles (CSNPs) as gene vectors by ionic cross-linking with tripolyphosphate (TPP). CSNPs were characterized in terms of particle size, zeta potential, and polydispersity index (PDI) using a Zetasizer, and morphology was evaluated by transmission electron microscopy (TEM). Furthermore, the cytotoxicity and biocompatibility of CSNPs were correspondingly examined by a 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and histological examination. Agarose gel electrophoresis and UV spectrophotometric methods were performed to measure the loading capacity. The cell transfection efficiency of CSNPs loaded with plasmids or siRNA was analyzed by fluorescence microscopy or laser scanning confocal microscopy. The results showed that CSNPs were prepared successfully by the ionic gelation method, which had a smaller partcticle size (100 nm-200 nm), stable dispersibility, low cytotoxicity, good tissue-biocompatibility, and high gene-loading efficiency. These CSNPs could transfer the plasmids or siRNA to cells. However, CSNPs might have a much higher transfection efficiency for siRNAs than for plasmids, which implies that CSNPs might be a safer and more efficient vector for delivering siRNAs rather than plasmids.