Based on the basic theory of mechanics,kinematic and dynamic analysis for a slider-crank mechanism with a balance mechanism is performed.The theoretical formula of the load spectrum for the interaction between the cra...Based on the basic theory of mechanics,kinematic and dynamic analysis for a slider-crank mechanism with a balance mechanism is performed.The theoretical formula of the load spectrum for the interaction between the crank shaft and the bearing seat of the upper beam is achieved by approximately simplifying the mechanical model of the crank shaft.The simulation for the load spectrum data of combined frame under the operating conditions of blanking or piling is performed using Matlab and the law of the load spectrum curves under these two conditions is analyzed.The simulation results show that under a no-load condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic sine wave and under the piling condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic pulse wave.The simulation results can provide a theoretical foundation for the load determination during the process of analyzing the dynamic characteristics on the combined frame of a closed high-speed press through the finite element method.展开更多
In flood control dams it is not only the failure to prevent flood larger than their design carrying capacity, but also the uncertainties of hydraulic factors that cause disasters. In general, the hydraulic risk is not...In flood control dams it is not only the failure to prevent flood larger than their design carrying capacity, but also the uncertainties of hydraulic factors that cause disasters. In general, the hydraulic risk is not considered in most of the hydrological analysis in floodproofing plan and design. In this paper, a method of evaluating the hydraulic risk is developed by employing risk theory, and the concept can easily be extended to other types of risk analysis. As a result, it is possible not to consider the hydraulic resks when the design hydrologic risk of flood control dam is lger. Otherwise, the hydraulic risks must be noticed. The research is very helpful for the development of the flood control theory used at present.展开更多
According to the structure of the hohl schaft kegel(HSK) tooling system and its working principle, a mechanical model of the HSK tooling system is established. Major factors influencing the stiffness of the system a...According to the structure of the hohl schaft kegel(HSK) tooling system and its working principle, a mechanical model of the HSK tooling system is established. Major factors influencing the stiffness of the system are analyzed and the relationship between the load and the manufacturing quality is obtained. The basic rule of the stiffness variation is presented and the theoretical analysis is in a good agreement with experimental results. The dynamic stiffness must also be considered to evaluate the performance of the tooling system besides the staticstiffness. Finally, the selecting principles of the HSK types are proposed and their optimum operating conditions are established.展开更多
Nonlinear amphibious vehicle rolling under regular waves and wind load is analyzed by a single degree of freedom system.Considering nonlinear damping and restoring moments,a nonlinear rolling dynamical equation of amp...Nonlinear amphibious vehicle rolling under regular waves and wind load is analyzed by a single degree of freedom system.Considering nonlinear damping and restoring moments,a nonlinear rolling dynamical equation of amphibious vehicle is established.The Hamiltonian function of the nonlinear rolling dynamical equation of amphibious vehicle indicate when subjected to joint action of periodic wave excitation and crosswind,the nonlinear rolling system degenerates into being asymmetric.The threshold value of excited moment of wave and wind is analyzed by the Melnikov method.Finally,the nonlinear rolling motion response and phase portrait were simulated by four order Runge-Kutta method at different excited moment parameters.展开更多
Numerical method is popular in analysing the blast wave propagation and interaction with structures.However,because of the extremely short duration of blast wave and energy trans-mission between different grids,the nu...Numerical method is popular in analysing the blast wave propagation and interaction with structures.However,because of the extremely short duration of blast wave and energy trans-mission between different grids,the numerical results are sensitive to the finite element mesh size.Previous numerical simulations show that a mesh size acceptable to one blast scenario might not be proper for another case,even though the difference between the two scenarios is very small,indicating a simple numerical mesh size convergence test might not be enough to guarantee accu-rate numerical results.Therefore,both coarse mesh and fine mesh were used in different blast scenarios to investigate the mesh size effect on numerical results of blast wave propagation and interaction with structures.Based on the numerical results and their comparison with field test re-sults and the design charts in TM5-1300,a numerical modification method was proposed to correct the influence of the mesh size on the simulated results.It can be easily used to improve the accu-racy of the numerical results of blast wave propagation and blast loads on structures.展开更多
Based on the concept of stiffness degradation, a damage index of the whole frame and the storey is proposed for the frame seismic performance evaluation. The index is compatible with the non-linear static analysis (e...Based on the concept of stiffness degradation, a damage index of the whole frame and the storey is proposed for the frame seismic performance evaluation. The index is compatible with the non-linear static analysis (e. g. the pushover analysis), and the structural damage is considered via plastic hinges. Simultaneously, a practical approach is developed to obtain the relationships between the proposed index and earthquake intensities based on the capacity spectrum method. The proposed index is then illustrated through two low-rise reinforced concrete frames, and it is also compared with some other indices. The results indicate that the proposed index is on the safe side and not sensitive to the lateral load pattern. The storey index is helpful to reflect the storey damage and to uncover the position of the weak storey. Finally, the relationship between performance levels and damage index values is also proposed through statistical analysis for the performance-based seismic evaluation.展开更多
This paper presents an analytical solution for one-dimensional consolidation of soft soil under some common types of cyclic loading such as trapezoidal cyclic loading, based on the assumptions proposed by Davis and Ra...This paper presents an analytical solution for one-dimensional consolidation of soft soil under some common types of cyclic loading such as trapezoidal cyclic loading, based on the assumptions proposed by Davis and Raymond (1965) that the decrease in permeability is proportional to the decrease in compressibility during the consolidation process of the soil and that the distribution of initial effective stress is constant with depth the solution obtained, some diagrams are prepared and the It is verified by the existing analytical solutions in special cases. Using telex ant consolidation behavior is investigated.展开更多
The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite ele...The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.展开更多
Regularity of longitudinal load distribution on gear tooth when tooth faces are contacted uniformly and when only tooth ends are contacted, and influence on distribution exerted by longitudinal correction and flexible...Regularity of longitudinal load distribution on gear tooth when tooth faces are contacted uniformly and when only tooth ends are contacted, and influence on distribution exerted by longitudinal correction and flexible gear structure, are studied in the paper with method of finite element calculation combined with experiment. Research shows that load concentration exists on the conditions of uniform contact or one-end contact, and in the later case the stress nonuniformity factor on root is 1.5 to 2.0 times larger than in the former case. It also verifies that longitudinal correction and increased flexibility of gear structure are effective to improve longitudinal load distribution.展开更多
Backgound:Barefoot(BF) running has recently increased in popularity with claims that it is more natural and may result in fewer injuries due to a reduction in impact loading.However,novice BF runners do not necessaril...Backgound:Barefoot(BF) running has recently increased in popularity with claims that it is more natural and may result in fewer injuries due to a reduction in impact loading.However,novice BF runners do not necessarily immediately switch to a forefoot strike pattern.This may increase mechanical parameters such as loading rate,which has heen associated with certain running-related injuries,specifically,tibial stress fractures.patellofemoral pain,and plantar iasciitis.The purpose of this study was to examine changes in loading parameters between typical shod running and instructed BF running with real-time force feedback.Methods:Forty-nine patients seeking treatment for a lower extremity injury ran on a force-sensing treadmill in their typical shod condition and then BF at the same speed.While BF they received verbal instruction and real-time feedback of vertical ground reaction forces.Results:While 92%of subjects(n = 45) demonstrated a rearfoot strike pattern when shod,only 2%(n = 1) did during the instructed BF run.Additionally,while BF 47%(n = 23) eliminated the vertical impact transient in all eight steps analyzed.All loading variables of interest were significantly reduced from the shod to instructed BF condition.These included maximum instantaneous and average vertical loading rates of the ground reaction force(p 【 0.0001),stiffness during initial loading(p 【 0.0001).and peak medial(p = 0.001) and lateral(p 【 0.0001) ground reaction forces and impulses in the vertical(p 【 0.0001).medial(p = 0.047),and lateral(p 【 0.0001) directions.Conclusion:As impact loading has been associated with certain running-related injuries,instruction and feedback on the proper forefoot strike pattern may help reduce the injury risk associated with transitioning to BF running.展开更多
Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of th...Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of the mechanical system was presented.By using the MSC.Software products the following exemplary computer simulations were made: dynamic load impact on the hydraulic leg as well as effectiveness of the hydraulic leg protection against overload with help of gas accumulator.展开更多
For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with ...For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with different uniaxial compressive loads of 0, 2, 4 and 6 MPa. It is found that peak stress, peak strain, elastic modulus and total strain energy decrease with the increase of static compressive stress. Based on the test results, the mechanism on damage and failure of rock was analyzed, and according to the equivalent strain hypothesis, a new constitutive model of elastic-plastic damage was established, and then the calculated results with the established model were compared with test results to show a good agreement. Furthermore the rule of releasing ratio of damage strain energy was discussed.展开更多
A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for fre...A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for free field explosive and the other for structural response under blast loads, are performed to model the whole processes from the propagation of the pressure wave to the response of structures. Based on the simulation, it is concluded that this model can be used for reasonably accurate explosive analysis of structures. The resulting information would be valuable for protecting structures under blast loads.展开更多
Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of exte...Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically.展开更多
Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision...Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS展开更多
An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral config...An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.展开更多
In order to investigate the stress-dependent properties of hot-mix asphalt (HMA),a dynamic modulus test was conducted on a group of AC-20 specimens at various stress states and loading frequencies,respectively.A use...In order to investigate the stress-dependent properties of hot-mix asphalt (HMA),a dynamic modulus test was conducted on a group of AC-20 specimens at various stress states and loading frequencies,respectively.A user-defined material (UMAT )subroutine incorporating stress-dependent constitutive model was developed and finite element (FE)simulation was utilized to confirm the validity of the UMAT.A three-dimensional (3D )FE model for typical pavement structure was established,considering the HMA layer as a stress-dependent material and other layers as linear elastic materials.Periodic load was applied to the pavement model and the pavement responses were calculated,including dynamic modulus distributions,surface deflection,shear stress and tensile strain in the HMA layer,etc.Both test results and FE model predictions indicate that the dynamic modulus of asphalt concrete is sensitive to stress state and loading frequency.Using the nonlinear stress-dependent model results in greater predicted pavement responses compared with the linear elastic model.It is also found that the effects of stress-dependency on pavement responses become more significant as loading frequency decreases.展开更多
基金The Key Technologies R& D Program of Jiangsu Province(No. BE2006036)Transformation Program of Science and Technology Achievements of Jiangsu Province (No. BA2008030)
文摘Based on the basic theory of mechanics,kinematic and dynamic analysis for a slider-crank mechanism with a balance mechanism is performed.The theoretical formula of the load spectrum for the interaction between the crank shaft and the bearing seat of the upper beam is achieved by approximately simplifying the mechanical model of the crank shaft.The simulation for the load spectrum data of combined frame under the operating conditions of blanking or piling is performed using Matlab and the law of the load spectrum curves under these two conditions is analyzed.The simulation results show that under a no-load condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic sine wave and under the piling condition,the load spectrum curves of the interaction between the crank shaft and the bearing seat of the upper beam present a form of periodic pulse wave.The simulation results can provide a theoretical foundation for the load determination during the process of analyzing the dynamic characteristics on the combined frame of a closed high-speed press through the finite element method.
文摘In flood control dams it is not only the failure to prevent flood larger than their design carrying capacity, but also the uncertainties of hydraulic factors that cause disasters. In general, the hydraulic risk is not considered in most of the hydrological analysis in floodproofing plan and design. In this paper, a method of evaluating the hydraulic risk is developed by employing risk theory, and the concept can easily be extended to other types of risk analysis. As a result, it is possible not to consider the hydraulic resks when the design hydrologic risk of flood control dam is lger. Otherwise, the hydraulic risks must be noticed. The research is very helpful for the development of the flood control theory used at present.
文摘According to the structure of the hohl schaft kegel(HSK) tooling system and its working principle, a mechanical model of the HSK tooling system is established. Major factors influencing the stiffness of the system are analyzed and the relationship between the load and the manufacturing quality is obtained. The basic rule of the stiffness variation is presented and the theoretical analysis is in a good agreement with experimental results. The dynamic stiffness must also be considered to evaluate the performance of the tooling system besides the staticstiffness. Finally, the selecting principles of the HSK types are proposed and their optimum operating conditions are established.
基金The Pre-research Project of the General Armament DepartmentThe Science Fund of North University of China(No.20130105)
文摘Nonlinear amphibious vehicle rolling under regular waves and wind load is analyzed by a single degree of freedom system.Considering nonlinear damping and restoring moments,a nonlinear rolling dynamical equation of amphibious vehicle is established.The Hamiltonian function of the nonlinear rolling dynamical equation of amphibious vehicle indicate when subjected to joint action of periodic wave excitation and crosswind,the nonlinear rolling system degenerates into being asymmetric.The threshold value of excited moment of wave and wind is analyzed by the Melnikov method.Finally,the nonlinear rolling motion response and phase portrait were simulated by four order Runge-Kutta method at different excited moment parameters.
基金Supported by National Natural Science Foundation of China (No.50638030, 50528808)the National Key Technologies R&D Program of China (No.2006BAJ13B02)the Australian Research Council (No.DP0774061).
文摘Numerical method is popular in analysing the blast wave propagation and interaction with structures.However,because of the extremely short duration of blast wave and energy trans-mission between different grids,the numerical results are sensitive to the finite element mesh size.Previous numerical simulations show that a mesh size acceptable to one blast scenario might not be proper for another case,even though the difference between the two scenarios is very small,indicating a simple numerical mesh size convergence test might not be enough to guarantee accu-rate numerical results.Therefore,both coarse mesh and fine mesh were used in different blast scenarios to investigate the mesh size effect on numerical results of blast wave propagation and interaction with structures.Based on the numerical results and their comparison with field test re-sults and the design charts in TM5-1300,a numerical modification method was proposed to correct the influence of the mesh size on the simulated results.It can be easily used to improve the accu-racy of the numerical results of blast wave propagation and blast loads on structures.
基金The National Basic Research Program of China(973 Program)(No.2007CB714200)
文摘Based on the concept of stiffness degradation, a damage index of the whole frame and the storey is proposed for the frame seismic performance evaluation. The index is compatible with the non-linear static analysis (e. g. the pushover analysis), and the structural damage is considered via plastic hinges. Simultaneously, a practical approach is developed to obtain the relationships between the proposed index and earthquake intensities based on the capacity spectrum method. The proposed index is then illustrated through two low-rise reinforced concrete frames, and it is also compared with some other indices. The results indicate that the proposed index is on the safe side and not sensitive to the lateral load pattern. The storey index is helpful to reflect the storey damage and to uncover the position of the weak storey. Finally, the relationship between performance levels and damage index values is also proposed through statistical analysis for the performance-based seismic evaluation.
基金Projects supported by the National Research Foundation for theDoctoral Program of Higher Education of China (No. 20030335027)and the Natural Science Foundation of Zhejiang Province (No.Y104463), China
文摘This paper presents an analytical solution for one-dimensional consolidation of soft soil under some common types of cyclic loading such as trapezoidal cyclic loading, based on the assumptions proposed by Davis and Raymond (1965) that the decrease in permeability is proportional to the decrease in compressibility during the consolidation process of the soil and that the distribution of initial effective stress is constant with depth the solution obtained, some diagrams are prepared and the It is verified by the existing analytical solutions in special cases. Using telex ant consolidation behavior is investigated.
基金Supported by National Natural Science Foundation of China(No.50608026)
文摘The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA. The multi-material Eulerian and Lagrangian coupling algorithm was adopted. A flu-id-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground, multiple ALE element for simulating air and TNT explosive material. Numerical simulations of the blast pressure wave propagation, struc-tural dynamic responses and deformation, and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed. The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure. The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation. The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic defor-mation subjected to intensive blast waves, and columns lost carrying capacity, subsequently lead-ing to the collapse of the whole structure. The approach coupling influence between struc-tural deformation and fluid load well simulated the progressive collapse process of structures, and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.
文摘Regularity of longitudinal load distribution on gear tooth when tooth faces are contacted uniformly and when only tooth ends are contacted, and influence on distribution exerted by longitudinal correction and flexible gear structure, are studied in the paper with method of finite element calculation combined with experiment. Research shows that load concentration exists on the conditions of uniform contact or one-end contact, and in the later case the stress nonuniformity factor on root is 1.5 to 2.0 times larger than in the former case. It also verifies that longitudinal correction and increased flexibility of gear structure are effective to improve longitudinal load distribution.
文摘Backgound:Barefoot(BF) running has recently increased in popularity with claims that it is more natural and may result in fewer injuries due to a reduction in impact loading.However,novice BF runners do not necessarily immediately switch to a forefoot strike pattern.This may increase mechanical parameters such as loading rate,which has heen associated with certain running-related injuries,specifically,tibial stress fractures.patellofemoral pain,and plantar iasciitis.The purpose of this study was to examine changes in loading parameters between typical shod running and instructed BF running with real-time force feedback.Methods:Forty-nine patients seeking treatment for a lower extremity injury ran on a force-sensing treadmill in their typical shod condition and then BF at the same speed.While BF they received verbal instruction and real-time feedback of vertical ground reaction forces.Results:While 92%of subjects(n = 45) demonstrated a rearfoot strike pattern when shod,only 2%(n = 1) did during the instructed BF run.Additionally,while BF 47%(n = 23) eliminated the vertical impact transient in all eight steps analyzed.All loading variables of interest were significantly reduced from the shod to instructed BF condition.These included maximum instantaneous and average vertical loading rates of the ground reaction force(p 【 0.0001),stiffness during initial loading(p 【 0.0001).and peak medial(p = 0.001) and lateral(p 【 0.0001) ground reaction forces and impulses in the vertical(p 【 0.0001).medial(p = 0.047),and lateral(p 【 0.0001) directions.Conclusion:As impact loading has been associated with certain running-related injuries,instruction and feedback on the proper forefoot strike pattern may help reduce the injury risk associated with transitioning to BF running.
文摘Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of the mechanical system was presented.By using the MSC.Software products the following exemplary computer simulations were made: dynamic load impact on the hydraulic leg as well as effectiveness of the hydraulic leg protection against overload with help of gas accumulator.
文摘For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with different uniaxial compressive loads of 0, 2, 4 and 6 MPa. It is found that peak stress, peak strain, elastic modulus and total strain energy decrease with the increase of static compressive stress. Based on the test results, the mechanism on damage and failure of rock was analyzed, and according to the equivalent strain hypothesis, a new constitutive model of elastic-plastic damage was established, and then the calculated results with the established model were compared with test results to show a good agreement. Furthermore the rule of releasing ratio of damage strain energy was discussed.
基金National Basic Research Program (973) of China (No. 2002CB412709)the National Natural Science Foun-dation of China (No. 50378054)
文摘A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for free field explosive and the other for structural response under blast loads, are performed to model the whole processes from the propagation of the pressure wave to the response of structures. Based on the simulation, it is concluded that this model can be used for reasonably accurate explosive analysis of structures. The resulting information would be valuable for protecting structures under blast loads.
基金Funded by the National Science Foundation of China (No. 50808090)
文摘Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically.
基金Foundation item: Supported by the National Natural Science Foundation of China (51309123), National Key Basic Research and Development Plan (973 Plan, 2013CB036104), Jiangsu Province Natural Science Research Projects in Colleges and Universities (13KJB570002), Open Foundation of State Key Laboratory of Ocean Engineering (1407), "Qing Lan Project" of Colleges and Universities in Jiangsu Province, Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Loads generated after an air crash, ship collision, and other accidents may destroy very large floating structures (VLFSs) and create additional connector loads. In this study, the combined effects of ship collision and wave loads are considered to establish motion differential equations for a multi-body VLFS. A time domain calculation method is proposed to calculate the connector load of the VLFS in waves. The Longuet-Higgins model is employed to simulate the stochastic wave load. Fluid force and hydrodynamic coefficient are obtained with DNV Sesam software. The motion differential equation is calculated by applying the time domain method when the frequency domain hydrodynamic coefficient is converted into the memory function of the motion differential equation of the time domain. As a result of the combined action of wave and impact loads, high-frequency oscillation is observed in the time history curve of the connector load. At wave directions of 0° and 75°, the regularities of the time history curves of the connector loads in different directions are similar and the connector loads of C1 and C2 in the X direction are the largest. The oscillation load is observed in the connector in the Y direction at a wave direction of 75° and not at 0° This paper presents a time domain calculation method of connector load to provide a certain reference function for the future development of Chinese VLFS
文摘An LES simulation of flow over an accumulator unit of an underwater compressed air energy storage facility was conducted. The accumulator unit consists of three touching underwater balloons arranged in a floral configuration. The structure of the flow was examined via three dimensional iso surfaces of the Q criterion. Vortical cores were observed on the leeward surface of the balloons. The swirling tube flows generated by these vortical cores were depicted through three dimensional path lines. The flow dynamics were visualized via time series snapshots of two dimensional vorticity contours perpendicular to the flow direction; revealing the turbulent swinging motions of the aforementioned shedding-swirling tube flows. The time history of the hydrodynamic loading was presented in terms of lift and drag coefficients. Drag coefficient of each individual balloon in the floral configuration was smaller than that of a single balloon. It was found that the total drag coefficient of the floral unit of three touching balloons, i.e. summation of the drag coefficients of the balloons, is not too much larger than that of a single balloon whereas it provides three times the storage capacity. In addition to its practical significance in designing appropriate foundation and supports, the instantaneous hydrodynamic loading was used to determine the frequency of the turbulent swirling-swinging motions of the shedding vortex tubes; the Strouhal number was found to be larger than that of a single sphere at the same Reynolds number.
基金Jiangsu Provincial Transportation Science and Technology Project(No.2011Y02-1-G1)
文摘In order to investigate the stress-dependent properties of hot-mix asphalt (HMA),a dynamic modulus test was conducted on a group of AC-20 specimens at various stress states and loading frequencies,respectively.A user-defined material (UMAT )subroutine incorporating stress-dependent constitutive model was developed and finite element (FE)simulation was utilized to confirm the validity of the UMAT.A three-dimensional (3D )FE model for typical pavement structure was established,considering the HMA layer as a stress-dependent material and other layers as linear elastic materials.Periodic load was applied to the pavement model and the pavement responses were calculated,including dynamic modulus distributions,surface deflection,shear stress and tensile strain in the HMA layer,etc.Both test results and FE model predictions indicate that the dynamic modulus of asphalt concrete is sensitive to stress state and loading frequency.Using the nonlinear stress-dependent model results in greater predicted pavement responses compared with the linear elastic model.It is also found that the effects of stress-dependency on pavement responses become more significant as loading frequency decreases.