Fuel accumulation, mainly as fatty acids, is one of the main characteristics of migratory, birds. Studying to what extent each population or species manages fuel load and how it varies along routes of migration or bet...Fuel accumulation, mainly as fatty acids, is one of the main characteristics of migratory, birds. Studying to what extent each population or species manages fuel load and how it varies along routes of migration or between seasons (autumn and spring migrations) is crucial to our understanding of bird migration strategies. Our aim here was to analyse whether migratory blackcaps Sylvia atrieapilla passing through northern Iberia differ in their mean fuel loads, rate of fuel accumulation and ' potential' flight ranges between migration seasons. Blackcaps were mist netted for 4 h-periods beginning at dawn from 16 September to 15 November 2003 - 2005, and from 1 March to 30 April 2004 - 2006 in a European Atlantic hedgerow at Loza, northern Iberia. Both fuel load and fuel deposition rate (this latter assessed with difference in body mass of within-season recaptured individuals) were higher in autumn than in spring. Possible hypotheses explaining these results could be seasonal-associated variations in food availability (likely lower during spring than during autumn), the fact that a fraction of the migrants captured in spring could breed close to the study area and different selective pressures for breeding and wintering展开更多
In this paper a numerical investigation has been presented on the stall mechanism of a highly loaded Single Stage Low Speed Fan designed for the research test facility to be installed at North Western Polytechnic Univ...In this paper a numerical investigation has been presented on the stall mechanism of a highly loaded Single Stage Low Speed Fan designed for the research test facility to be installed at North Western Polytechnic University (NWPU) Xi’an, China. The results presented are for the design point, near stall and just stall operating conditions at design speed. Design point studies have been found to be an indicative of stall area. Unsteady method of domain scaling has been used to compute the results at near stall and just stall conditions. It has been found that unlike the conventional tip leakage flow of the rotor, stator hub section is mainly responsible for the stall of the fan. The flow mechanism has been discussed with correlation to the design variables and previous investigations. Commercial CFD code NUMECA FINE/Turbo has been used for computations; results have been compared with results obtained from commercial CFD code ANSYS-CFX. The loss prediction of latter code is conservative than the former. The stall mechanism predicted by both codes is analogous.展开更多
The evaluation of reliability for structural system is important in engineering practices.In this paper,by combining the design point method,JC method,interval analysis theory,and increment load method,we propose a ne...The evaluation of reliability for structural system is important in engineering practices.In this paper,by combining the design point method,JC method,interval analysis theory,and increment load method,we propose a new interval design point method for the reliability of structural systems in which the distribution parameters of random variables are described as interval variables.The proposed method may provide exact probabilistic interval reliability of structures whose random variables can have either a normal or abnormal distribution form.At last,we show the feasibility of the proposed approach through a typical example.展开更多
基金supported by a postgraduate fellowship from the Basque Governmentsupported by project CGL2007-61395(Ministry of Education and Science,Government of Spain)
文摘Fuel accumulation, mainly as fatty acids, is one of the main characteristics of migratory, birds. Studying to what extent each population or species manages fuel load and how it varies along routes of migration or between seasons (autumn and spring migrations) is crucial to our understanding of bird migration strategies. Our aim here was to analyse whether migratory blackcaps Sylvia atrieapilla passing through northern Iberia differ in their mean fuel loads, rate of fuel accumulation and ' potential' flight ranges between migration seasons. Blackcaps were mist netted for 4 h-periods beginning at dawn from 16 September to 15 November 2003 - 2005, and from 1 March to 30 April 2004 - 2006 in a European Atlantic hedgerow at Loza, northern Iberia. Both fuel load and fuel deposition rate (this latter assessed with difference in body mass of within-season recaptured individuals) were higher in autumn than in spring. Possible hypotheses explaining these results could be seasonal-associated variations in food availability (likely lower during spring than during autumn), the fact that a fraction of the migrants captured in spring could breed close to the study area and different selective pressures for breeding and wintering
文摘In this paper a numerical investigation has been presented on the stall mechanism of a highly loaded Single Stage Low Speed Fan designed for the research test facility to be installed at North Western Polytechnic University (NWPU) Xi’an, China. The results presented are for the design point, near stall and just stall operating conditions at design speed. Design point studies have been found to be an indicative of stall area. Unsteady method of domain scaling has been used to compute the results at near stall and just stall conditions. It has been found that unlike the conventional tip leakage flow of the rotor, stator hub section is mainly responsible for the stall of the fan. The flow mechanism has been discussed with correlation to the design variables and previous investigations. Commercial CFD code NUMECA FINE/Turbo has been used for computations; results have been compared with results obtained from commercial CFD code ANSYS-CFX. The loss prediction of latter code is conservative than the former. The stall mechanism predicted by both codes is analogous.
基金supported by the Postdoctoral Science Foundation of China(Grant No.2013M531239)
文摘The evaluation of reliability for structural system is important in engineering practices.In this paper,by combining the design point method,JC method,interval analysis theory,and increment load method,we propose a new interval design point method for the reliability of structural systems in which the distribution parameters of random variables are described as interval variables.The proposed method may provide exact probabilistic interval reliability of structures whose random variables can have either a normal or abnormal distribution form.At last,we show the feasibility of the proposed approach through a typical example.