利用CAESARⅡ软件,综合考虑通用型浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)在海洋环境中受到风浪载荷及温度变化和船体变形产生的附加位移等对管道的作用,根据设计的压载水管路系统建立三维模型,给出建模...利用CAESARⅡ软件,综合考虑通用型浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)在海洋环境中受到风浪载荷及温度变化和船体变形产生的附加位移等对管道的作用,根据设计的压载水管路系统建立三维模型,给出建模过程中对泵口的模拟方法,并对玻璃钢管道泵口载荷及法兰泄漏进行分析校核。经验证,该压载水管路系统中压载泵及法兰的设置是合理的,可排除安全隐患,为通用型FPSO管路系统的设计与优化提供技术支撑与数据参考。展开更多
Experimental investigation and numerical modeling on elasto-plastic notch-root stress/strain distributions under monotonic loadings of both the Ni-based directionally solidified(DS)superalloy and Titanium alloy were c...Experimental investigation and numerical modeling on elasto-plastic notch-root stress/strain distributions under monotonic loadings of both the Ni-based directionally solidified(DS)superalloy and Titanium alloy were carried out simultaneously.For measuring inhomogeneous deformation fields at notch roots,an optical-numerical full-field surface deformation measurement system was developed based on the digital image correlation(DIC)method.The obtained strain distributions were then verified with reasonable accuracy by finite element simulation,where an anisotropic elastic-viscoplastic constitutive model was developed for DS superalloy and a simple isotropic stress-strain relationship was adopted for Titanium alloy.Meanwhile,factors affecting elasto-plastic notch-root stress/strain distributions were systematically investigated numerically,where the emphasis was placed on temperature,loading stress rate,sample shape,anisotropy and notch features.The results show that stress/strain behavior at notch root is significantly affected by the mentioned factors,which are concretely embodied in the distribution of tensile stress/strain,equivalent stress and accumulative equivalent plastic strain.展开更多
文摘利用CAESARⅡ软件,综合考虑通用型浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)在海洋环境中受到风浪载荷及温度变化和船体变形产生的附加位移等对管道的作用,根据设计的压载水管路系统建立三维模型,给出建模过程中对泵口的模拟方法,并对玻璃钢管道泵口载荷及法兰泄漏进行分析校核。经验证,该压载水管路系统中压载泵及法兰的设置是合理的,可排除安全隐患,为通用型FPSO管路系统的设计与优化提供技术支撑与数据参考。
基金supported by the National Natural Science Foundation of China(Grant No.51275023)the Innovation Foundation of BUAA for PhD Graduates(Grant No.YWF-14-YJSY-49)
文摘Experimental investigation and numerical modeling on elasto-plastic notch-root stress/strain distributions under monotonic loadings of both the Ni-based directionally solidified(DS)superalloy and Titanium alloy were carried out simultaneously.For measuring inhomogeneous deformation fields at notch roots,an optical-numerical full-field surface deformation measurement system was developed based on the digital image correlation(DIC)method.The obtained strain distributions were then verified with reasonable accuracy by finite element simulation,where an anisotropic elastic-viscoplastic constitutive model was developed for DS superalloy and a simple isotropic stress-strain relationship was adopted for Titanium alloy.Meanwhile,factors affecting elasto-plastic notch-root stress/strain distributions were systematically investigated numerically,where the emphasis was placed on temperature,loading stress rate,sample shape,anisotropy and notch features.The results show that stress/strain behavior at notch root is significantly affected by the mentioned factors,which are concretely embodied in the distribution of tensile stress/strain,equivalent stress and accumulative equivalent plastic strain.