In flood control dams it is not only the failure to prevent flood larger than their design carrying capacity, but also the uncertainties of hydraulic factors that cause disasters. In general, the hydraulic risk is not...In flood control dams it is not only the failure to prevent flood larger than their design carrying capacity, but also the uncertainties of hydraulic factors that cause disasters. In general, the hydraulic risk is not considered in most of the hydrological analysis in floodproofing plan and design. In this paper, a method of evaluating the hydraulic risk is developed by employing risk theory, and the concept can easily be extended to other types of risk analysis. As a result, it is possible not to consider the hydraulic resks when the design hydrologic risk of flood control dam is lger. Otherwise, the hydraulic risks must be noticed. The research is very helpful for the development of the flood control theory used at present.展开更多
介绍载荷抗力系数设计(Load and Resistance Factor Design,LRFD)方法的背景和原理。在此基础上,以某深水半潜式钻井平台的舵机基座强度分析为例,基于挪威船级社海洋结构物设计规范和经典力学理论,展示LRFD方法在海洋结构物局部结构强...介绍载荷抗力系数设计(Load and Resistance Factor Design,LRFD)方法的背景和原理。在此基础上,以某深水半潜式钻井平台的舵机基座强度分析为例,基于挪威船级社海洋结构物设计规范和经典力学理论,展示LRFD方法在海洋结构物局部结构强度分析中的实际应用,表明该方法的特点。展开更多
API RP 2A-WSD是美国石油协会(API)基于工作应力法(WSD)推出的海洋工程设计、建造的系列标准,也是国内外海洋工程结构物设计的重要依据;API RP 2A-LRFD是美国石油协会于1993年基于载荷与抗力系数法(LRFD)推出的系列标准。对2种结构设计...API RP 2A-WSD是美国石油协会(API)基于工作应力法(WSD)推出的海洋工程设计、建造的系列标准,也是国内外海洋工程结构物设计的重要依据;API RP 2A-LRFD是美国石油协会于1993年基于载荷与抗力系数法(LRFD)推出的系列标准。对2种结构设计方法(WSD和LRFD)进行了论述,并从质量控制角度进行了对比论证。选取两类典型的海洋模块钻机结构,利用有限元分析软件分别进行计算,通过对结构计算结果进行对比,分析2种结构设计方法的主要区别。以实际工程应用为例,得出WSD方法作为钻机结构设计方法的实用性结论。展开更多
The existing hydraulic system always have problems of temperature rise,runningstability and anti-interference of the implementation components,reliability of hydrauliccomponents,maintenance difficulties,and other issu...The existing hydraulic system always have problems of temperature rise,runningstability and anti-interference of the implementation components,reliability of hydrauliccomponents,maintenance difficulties,and other issues.With high efficiency,energysaving,reliability,easy operating,stable running,anti-interference ability,and other advantages,the load-sensitive hydraulic system is more suitable for coal mine all-hydrauliccore rig.Therefore,for the technical development of the coal mine all-hydraulic core rig,the load-sensitive technology employed by the rig should be of great significance.展开更多
Additional displacement of the building foundations over old goaf are prone to happen under the addi- tional loads induced by new buildings, weakening-rock mass by mining and seismic actions, which will cause serious ...Additional displacement of the building foundations over old goaf are prone to happen under the addi- tional loads induced by new buildings, weakening-rock mass by mining and seismic actions, which will cause serious damage to the buildings. In order to analyze the safety of the building foundations safety over the old goaf. the structure characteristics of the strata over the old goaf was investigated and the instability conditions of overhanging rocks upon old goaf were also analyzed in this paper. The results indicate that the stability of overhanging rocks is remarkably decreased by the interactions of mining fractures, earthquake force and building load, in addition, the settlement of the foundations over old goal is increased by the instability of overhanging rocks. According to the location of a new power plant in Yima Mine and its ambient conditions, we defined the influence scope of old goal via resistivity tomography. Based on the seismic parameters of the construction site, a numerical FLAC3d model of the building foundation under the seismic actions and building load was developed. The numerical results are obtained as follows: the foundation of the main power house meets the requirement of 6° seismic fortification intensity: however, under 7° seismic fortification intensity, the maximum differential settlement of foundation between the neighboring pillars is close to the maximum allowable value, while the seismic fortification intensity reaches 8°, but the safety requirements will not be satisfied.展开更多
Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in a...Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program.展开更多
This paper proposes an empirical formula to estimate the shear strength of hydraulic expansion rockbolts.The field experimental results were obtained from eleven pullout tests to evaluate the results computed by the p...This paper proposes an empirical formula to estimate the shear strength of hydraulic expansion rockbolts.The field experimental results were obtained from eleven pullout tests to evaluate the results computed by the proposed formula.It was found that shear resistance of hydraulic expansion rockbolts significantly depends on the uniaxial compressive strength and elastic modulus of rock,with high correlation coefficients of 0.7651 and0.8587,respectively.The developed formula enables estimation of the maximum pullout load in an analytical process without pullout tests in the field.Conversely,due to the poor interlocking at the initial pullout load,the measured displacements were higher than the estimated ones.To reduce the interlocking effects between bolt and rock,we recommend preloading of 29.4 kN.Preload allows reducing the distance between the measured and estimated displacement and making two load-displacement curves practically identical with marginal differences of 1.1 to 1.5 mm at the maximum pullout load.展开更多
This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of bot...This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of both a single pile and pile groups.Considering the pile group effect and the skin friction from both outer and inner soils,an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups.The analytical solution was verified by centrifuge and field testing results.An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups.The results reveal that the axial forces in group piles are not the same.The larger the distance from central pile,the larger the axial force.The axial force in the central pile is the smallest,while that in corner piles is the largest.The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length.The axial force in side piles varies little with the variations of pile spacing,pile length,and shear modulus of the soil and is approximately equal to the average load shared by one pile.For a pile group,the larger the pile length is,the larger the influence radius is.As a result,the pile group effect is more apparent for a larger pile length.The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.展开更多
V-shape hulls are widely used in peacekeeping efforts such as demining vehicles in order to deflect the blast energy and reduce the effects of mine blast. Blast resistant design and energy absorption enhancement of V-...V-shape hulls are widely used in peacekeeping efforts such as demining vehicles in order to deflect the blast energy and reduce the effects of mine blast. Blast resistant design and energy absorption enhancement of V-shape plates were carried out using finite element analysis package ABAQUS. Various geometries of V-shape plates with and without interlayer of materials like Al-foams and honeycomb were employed to analyze their effects on the deformation of the plate and applied stresses and strains. The results obtained show that application of metallic foams leads to better response of the plate and consequently results in more energy dissipation, less dame to vehicle and enhances crew survivability.展开更多
The structural failure under severe ground motions is primarily caused by their unreasonable seismic failure mode (SFM). This paper provides a methodology aiming at the SFM improvement of reinforced concrete frame str...The structural failure under severe ground motions is primarily caused by their unreasonable seismic failure mode (SFM). This paper provides a methodology aiming at the SFM improvement of reinforced concrete frame structure. An RC frame is modeled and three types of failure criterion are defined as the premise of SFM. Static pushover analysis is adopted to identify the SFM. The dominant failure modes and failure paths of the structure are obtained in three lateral load patterns (inverted trian- gular distribution, uniform distribution and adaptive distribution). Based on the pushover analysis, the sequential failure of components and the probability of the occurrence of plastic hinges are determined. By this, weak components of the structure are detected and herein are strengthened. The project cost of the proposed strengthening strategy increases by 2.4%. Capacity spectrum method is used to study the performance of the strengthening structure. Pushover analysis is conducted again to present the improvement of strength and ductility. Lateral drift and local response through IDA are also studied to indicate that the strengthening of some columns and beams can improve the SFM to enhance the seismic capacity of structure.展开更多
文摘In flood control dams it is not only the failure to prevent flood larger than their design carrying capacity, but also the uncertainties of hydraulic factors that cause disasters. In general, the hydraulic risk is not considered in most of the hydrological analysis in floodproofing plan and design. In this paper, a method of evaluating the hydraulic risk is developed by employing risk theory, and the concept can easily be extended to other types of risk analysis. As a result, it is possible not to consider the hydraulic resks when the design hydrologic risk of flood control dam is lger. Otherwise, the hydraulic risks must be noticed. The research is very helpful for the development of the flood control theory used at present.
文摘介绍载荷抗力系数设计(Load and Resistance Factor Design,LRFD)方法的背景和原理。在此基础上,以某深水半潜式钻井平台的舵机基座强度分析为例,基于挪威船级社海洋结构物设计规范和经典力学理论,展示LRFD方法在海洋结构物局部结构强度分析中的实际应用,表明该方法的特点。
文摘API RP 2A-WSD是美国石油协会(API)基于工作应力法(WSD)推出的海洋工程设计、建造的系列标准,也是国内外海洋工程结构物设计的重要依据;API RP 2A-LRFD是美国石油协会于1993年基于载荷与抗力系数法(LRFD)推出的系列标准。对2种结构设计方法(WSD和LRFD)进行了论述,并从质量控制角度进行了对比论证。选取两类典型的海洋模块钻机结构,利用有限元分析软件分别进行计算,通过对结构计算结果进行对比,分析2种结构设计方法的主要区别。以实际工程应用为例,得出WSD方法作为钻机结构设计方法的实用性结论。
基金Supported by the Youth Innovation Fund of China Coal Research Institute(2007QN50)
文摘The existing hydraulic system always have problems of temperature rise,runningstability and anti-interference of the implementation components,reliability of hydrauliccomponents,maintenance difficulties,and other issues.With high efficiency,energysaving,reliability,easy operating,stable running,anti-interference ability,and other advantages,the load-sensitive hydraulic system is more suitable for coal mine all-hydrauliccore rig.Therefore,for the technical development of the coal mine all-hydraulic core rig,the load-sensitive technology employed by the rig should be of great significance.
基金the Funds of the State Key Development Program for Basic Research of China (Nos. 2013CB227900, 2010CB226800)the National Natural Science Foundation of China (Nos. 51108161, 51374201)+2 种基金the Open Laboratory Foundation for Deep Mine Construction of Henan Province of China (No. 2011KF-09)the Doctor Foundation in Henan Polytechnic University of China (No. Q2013-065)the Key Program for Science and Technology Research of Henan Province of China (Nos. 14A560002, 14B560021).
文摘Additional displacement of the building foundations over old goaf are prone to happen under the addi- tional loads induced by new buildings, weakening-rock mass by mining and seismic actions, which will cause serious damage to the buildings. In order to analyze the safety of the building foundations safety over the old goaf. the structure characteristics of the strata over the old goaf was investigated and the instability conditions of overhanging rocks upon old goaf were also analyzed in this paper. The results indicate that the stability of overhanging rocks is remarkably decreased by the interactions of mining fractures, earthquake force and building load, in addition, the settlement of the foundations over old goal is increased by the instability of overhanging rocks. According to the location of a new power plant in Yima Mine and its ambient conditions, we defined the influence scope of old goal via resistivity tomography. Based on the seismic parameters of the construction site, a numerical FLAC3d model of the building foundation under the seismic actions and building load was developed. The numerical results are obtained as follows: the foundation of the main power house meets the requirement of 6° seismic fortification intensity: however, under 7° seismic fortification intensity, the maximum differential settlement of foundation between the neighboring pillars is close to the maximum allowable value, while the seismic fortification intensity reaches 8°, but the safety requirements will not be satisfied.
基金Project(2014XT01)supported by Research Funds for the Central Universities,ChinaProject(51034005)supported by the National Natural Science Foundation of China+1 种基金Project(2012AA062004)supported by High-Tech Research and Development Program of China(863 Program)Project(NCET-13-1022)supported by the Program for New Century Excellent Talents in University,China
文摘Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program.
基金supported by 2016 Hongik University Research Fund and the Convergence R&D program of MSIP/NST[Convergence Research-14-2-ETRI,Development of Internet of Things(IoT)-based Urban Underground Utility Monitoring and Management System]
文摘This paper proposes an empirical formula to estimate the shear strength of hydraulic expansion rockbolts.The field experimental results were obtained from eleven pullout tests to evaluate the results computed by the proposed formula.It was found that shear resistance of hydraulic expansion rockbolts significantly depends on the uniaxial compressive strength and elastic modulus of rock,with high correlation coefficients of 0.7651 and0.8587,respectively.The developed formula enables estimation of the maximum pullout load in an analytical process without pullout tests in the field.Conversely,due to the poor interlocking at the initial pullout load,the measured displacements were higher than the estimated ones.To reduce the interlocking effects between bolt and rock,we recommend preloading of 29.4 kN.Preload allows reducing the distance between the measured and estimated displacement and making two load-displacement curves practically identical with marginal differences of 1.1 to 1.5 mm at the maximum pullout load.
基金supported by the Joint High Speed Railway Key Program of National Natural Science Foundation of China (Grant No.U1134207)the National Natural Science Foundation of China (Grant No.51378177)+1 种基金the Program for Excellent University Talents in New Century (Grant No.NCET-12-0843)the Fundamental Research Fund for the Central Universities (Grant No.106112014CDJZR200007)
文摘This paper aims to present a theoretical method to study the bearing performance of vertically loaded large-diameter pipe pile groups.The interactions between group piles result in different bearing performance of both a single pile and pile groups.Considering the pile group effect and the skin friction from both outer and inner soils,an analytical solution is developed to calculate the settlement and axial force in large-diameter pipe pile groups.The analytical solution was verified by centrifuge and field testing results.An extensive parametric analysis was performed to study the bearing performance of the pipe pile groups.The results reveal that the axial forces in group piles are not the same.The larger the distance from central pile,the larger the axial force.The axial force in the central pile is the smallest,while that in corner piles is the largest.The axial force on the top of the corner piles decreases while that in the central pile increases with increasing of pile spacing and decreasing of pile length.The axial force in side piles varies little with the variations of pile spacing,pile length,and shear modulus of the soil and is approximately equal to the average load shared by one pile.For a pile group,the larger the pile length is,the larger the influence radius is.As a result,the pile group effect is more apparent for a larger pile length.The settlement of pile groups decreases with increasing of the pile number in the group and the shear modulus of the underlying soil.
文摘V-shape hulls are widely used in peacekeeping efforts such as demining vehicles in order to deflect the blast energy and reduce the effects of mine blast. Blast resistant design and energy absorption enhancement of V-shape plates were carried out using finite element analysis package ABAQUS. Various geometries of V-shape plates with and without interlayer of materials like Al-foams and honeycomb were employed to analyze their effects on the deformation of the plate and applied stresses and strains. The results obtained show that application of metallic foams leads to better response of the plate and consequently results in more energy dissipation, less dame to vehicle and enhances crew survivability.
基金supported by the National Major Basic Research Program of China (" 973" Project) (Grant No. 2007CB714202)the National Natural Science Foundation of China (Grant No. 90815027)
文摘The structural failure under severe ground motions is primarily caused by their unreasonable seismic failure mode (SFM). This paper provides a methodology aiming at the SFM improvement of reinforced concrete frame structure. An RC frame is modeled and three types of failure criterion are defined as the premise of SFM. Static pushover analysis is adopted to identify the SFM. The dominant failure modes and failure paths of the structure are obtained in three lateral load patterns (inverted trian- gular distribution, uniform distribution and adaptive distribution). Based on the pushover analysis, the sequential failure of components and the probability of the occurrence of plastic hinges are determined. By this, weak components of the structure are detected and herein are strengthened. The project cost of the proposed strengthening strategy increases by 2.4%. Capacity spectrum method is used to study the performance of the strengthening structure. Pushover analysis is conducted again to present the improvement of strength and ductility. Lateral drift and local response through IDA are also studied to indicate that the strengthening of some columns and beams can improve the SFM to enhance the seismic capacity of structure.