Here, the employment of subcritical water as an environmentally benign media has shown a certain potential for the hydrolysis ofiminodiaeetonitrile (IDAN). Additives (such as NH3.H2O, (NH4)2CO3, K2CO3) were sele...Here, the employment of subcritical water as an environmentally benign media has shown a certain potential for the hydrolysis ofiminodiaeetonitrile (IDAN). Additives (such as NH3.H2O, (NH4)2CO3, K2CO3) were selected to investigate the reactivity ofiminodiacetonitrile in the solutions of these species in the subcritical region for the possibility of preparing iminodiacetic acid (IDA) salts. A series of reactions were performed in a high temperature and pressure batch reactor with temperature ranging from 200 to 260 ℃, time ranging from 4 to 10 min, pressure ranging from 5 to 25 MPa and varying concentration of additives to consider the influence of these parameters on the yield of IDA salts. Reactivity of IDAN was not illustrated with the conversion but with respect to the yield of resultant IDA salts. The results demonstrate that hydrolysis reactivity of IDAN under the examined conditions has shown a remarkable sensitivity to the pH of the system at initial point of the reaction stage, and temperature effect is also obvious. Based on the results, possible reaction pathway and mechanism were proposed.展开更多
The convenient and efficient procedure for one-pot preparation of quinaldine derivatives from multi component reaction of anilines, acetone and benzaldehyde without any solvent under microwave irradiation on the surfa...The convenient and efficient procedure for one-pot preparation of quinaldine derivatives from multi component reaction of anilines, acetone and benzaldehyde without any solvent under microwave irradiation on the surface of alumina impregnated with hydrochloric acid is developed.展开更多
A new series of sulfonamide flavone derivatives are designed as non-covalent inhibitors of proteasome assisted with computer-aided drug design (CADD). The desired compounds were synthesized successfully and the biol...A new series of sulfonamide flavone derivatives are designed as non-covalent inhibitors of proteasome assisted with computer-aided drug design (CADD). The desired compounds were synthesized successfully and the biological evaluation was subsequently accomplished. The results showed negligible improvement from our lead compound (IC50 for β5 subunit was 14.0 μM). Thus, these flavone derivatives might be improved as potential 20S proteasome inhibitors.展开更多
Computer aided fragment-based lead discovery has been successfully applied to the design of inhibitors of aspartyl protease enzyme β-secretase(BACE1).A benzimidamide fragment,which binds to the two catalytic aspart...Computer aided fragment-based lead discovery has been successfully applied to the design of inhibitors of aspartyl protease enzyme β-secretase(BACE1).A benzimidamide fragment,which binds to the two catalytic aspartic acid residues in the active site of the enzyme,was selected as the starting compound.A novel series of 3-phenethylbenzimidamide inhibitors were designed and synthesized.Although biological evaluation results showed that the compounds displayed poor inhibitory activity towards BACE1,3-phenethylbenzimidamide analogs might be modified as potential BACE1 inhibitors.展开更多
文摘Here, the employment of subcritical water as an environmentally benign media has shown a certain potential for the hydrolysis ofiminodiaeetonitrile (IDAN). Additives (such as NH3.H2O, (NH4)2CO3, K2CO3) were selected to investigate the reactivity ofiminodiacetonitrile in the solutions of these species in the subcritical region for the possibility of preparing iminodiacetic acid (IDA) salts. A series of reactions were performed in a high temperature and pressure batch reactor with temperature ranging from 200 to 260 ℃, time ranging from 4 to 10 min, pressure ranging from 5 to 25 MPa and varying concentration of additives to consider the influence of these parameters on the yield of IDA salts. Reactivity of IDAN was not illustrated with the conversion but with respect to the yield of resultant IDA salts. The results demonstrate that hydrolysis reactivity of IDAN under the examined conditions has shown a remarkable sensitivity to the pH of the system at initial point of the reaction stage, and temperature effect is also obvious. Based on the results, possible reaction pathway and mechanism were proposed.
文摘The convenient and efficient procedure for one-pot preparation of quinaldine derivatives from multi component reaction of anilines, acetone and benzaldehyde without any solvent under microwave irradiation on the surface of alumina impregnated with hydrochloric acid is developed.
基金The National Natural Science Foundation of China(Grant No.21202003)the National Basic Research Program of China(Grant No.2012CB518000)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120001110010)
文摘A new series of sulfonamide flavone derivatives are designed as non-covalent inhibitors of proteasome assisted with computer-aided drug design (CADD). The desired compounds were synthesized successfully and the biological evaluation was subsequently accomplished. The results showed negligible improvement from our lead compound (IC50 for β5 subunit was 14.0 μM). Thus, these flavone derivatives might be improved as potential 20S proteasome inhibitors.
基金National Natural Science Foundation of China(Grant No. 21002002)Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200800011057)
文摘Computer aided fragment-based lead discovery has been successfully applied to the design of inhibitors of aspartyl protease enzyme β-secretase(BACE1).A benzimidamide fragment,which binds to the two catalytic aspartic acid residues in the active site of the enzyme,was selected as the starting compound.A novel series of 3-phenethylbenzimidamide inhibitors were designed and synthesized.Although biological evaluation results showed that the compounds displayed poor inhibitory activity towards BACE1,3-phenethylbenzimidamide analogs might be modified as potential BACE1 inhibitors.