-
题名基于改进YOLOv8n的高精度输液监测方法
- 1
-
-
作者
马双宝
秦乐达
付正
-
机构
武汉纺织大学机械工程与自动化学院
-
出处
《电子测量技术》
北大核心
2024年第12期155-163,共9页
-
基金
国家自然科学基金(62103309)项目资助。
-
文摘
针对视觉传感器输液监测方式精度不足与传感器不便安装的问题,提出一种基于改进YOLOv8n网络的高精度输液监测方法。在原有网络基础上,使用PuzzleMix数据增强,提高网络泛化能力并避免关键特征被裁剪;引入层次筛选特征金字塔结构,降低参数量的同时增强对液滴特征的表达能力;添加混合局部通道注意力机制,加强液滴特征提取;提出一种Inner-PIoU损失函数,通过辅助回归框使回归效果更优,提升了精度。同时,提出一种使用检测框几何参数比值的方法精确测定输液速度与输液余量。实验结果表明,改进网络与YOLOv8n相比,mAP@0.5:0.95提升了2.674%,且模型大小仅3.87M。在多种复杂输液环境中,所提方法能够实现高精度监测输液速度与输液余量。
-
关键词
输液监测
YOLOv8n
特征金字塔
混合通道注意力
辅助回归框
-
Keywords
infusion monitoring
YOLOv8n
feature pyramid networks
mixed local channel attention
auxiliary regression anchor box
-
分类号
TN911.73
[电子电信—通信与信息系统]
TP391.41
[自动化与计算机技术—计算机应用技术]
-