In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fraction...In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.展开更多
文摘In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.