In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fraction...In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.展开更多
Nonlocal symmetry and explicit solution of the integrable Alice-Bob modified Korteweg-de Vries(ABm Kd V) equation is discussed, which has been established by the aid of the shifted parity and delayed time reversal to ...Nonlocal symmetry and explicit solution of the integrable Alice-Bob modified Korteweg-de Vries(ABm Kd V) equation is discussed, which has been established by the aid of the shifted parity and delayed time reversal to describe two-place events. Based on the Lax pair which contains the two-order partial derivative, the Lie symmetry group method is successfully applied to find the exact invariant solution for the AB-m Kd V equation with nonlocal symmetry by introducing one suitable auxiliary variable. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to some specific functions are derived. Figures show the physical phenomenon, that is, "the shifted parity and delayed time reversal to describe two-place events".展开更多
文摘In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11705077 and 11775104Natural Science Foundation of Zhejiang Province under Grant No.LY14A010005Scientific Research Foundation of the First-Class Discipline of Zhejiang Province(B)(No.201601)
文摘Nonlocal symmetry and explicit solution of the integrable Alice-Bob modified Korteweg-de Vries(ABm Kd V) equation is discussed, which has been established by the aid of the shifted parity and delayed time reversal to describe two-place events. Based on the Lax pair which contains the two-order partial derivative, the Lie symmetry group method is successfully applied to find the exact invariant solution for the AB-m Kd V equation with nonlocal symmetry by introducing one suitable auxiliary variable. Meanwhile, based on the prolonged system, the explicit analytic interaction solutions related to some specific functions are derived. Figures show the physical phenomenon, that is, "the shifted parity and delayed time reversal to describe two-place events".