The necessity and feasibility of an expert system for carbide-tool utilization are analyzed and a practical system named CUES(carbide-tool utilization expert system ) is developed and realized. The system concept, mod...The necessity and feasibility of an expert system for carbide-tool utilization are analyzed and a practical system named CUES(carbide-tool utilization expert system ) is developed and realized. The system concept, module structure, data management, inference strategy and the interface design of the system are discussed in.detail. The system would be useful not only for the preparation of tool bank of FMS or CIMS, but the for the proper application of cemented carbide tools in conventional machining Processes.展开更多
A system architecture of solid-based NC simulation for milling machining is given, the function of which is composed of cutting simulation of different cutters, such as flat-end cutters, ball-end cutters, dome-end cut...A system architecture of solid-based NC simulation for milling machining is given, the function of which is composed of cutting simulation of different cutters, such as flat-end cutters, ball-end cutters, dome-end cutters, angle cutters and drill cutters, rapid pre-checking of interference, detection of collision, and visualization of over cut in the stock. A new method based on the design model is raised to detect the collision and pre-check the interference during NC milling machining. A special problem about the construction of a cutter′s swept volume, self-intersection is discussed. All the work on the construction, the subtraction and the display of solids is accomplished with the help of ACIS 3-D modeling.展开更多
Aim To develop blade mould CAD/CAM system of torque converter. Methods The mouldconsisted of four parts and an interactive computer program was developed to design a blade mould of torque converter based on UG at wor...Aim To develop blade mould CAD/CAM system of torque converter. Methods The mouldconsisted of four parts and an interactive computer program was developed to design a blade mould of torque converter based on UG at workstation. Results As compar- ed to manual modeling, it is showed in the application that this means not only improves the accuracy of blade shape and manufacture efficiency of converter, but also reduces costs. Conclusion It is proved that this CAD/CAM system is successful, and it opens up widely prospects for design and manufacture of the blade elementsand their moulds.展开更多
The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by int...The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by introducing the key frame idea in the animation-making. According to the feature of the part, several key tool orientations are set without interference between the tool and the part. Then, these key tool orientations are inter- polated by the spline function. By mapping the surface parameter to the spline parameter, the spline function value is obtained and taken as the tool orientation when generating the CL file. The machining result shows that the proposed method realizes the global smoothing of the tool orientation and the continuity of the rotational speed and the rotational acceleration. It also avoids the shake of the machine tool and improves the machining quality.展开更多
Recognizing the drawbacks of stand-alone computer-aided tools in engineering, several hybrid systems are suggested with varying degree of success. In transforming the design concept to a finished product, in particula...Recognizing the drawbacks of stand-alone computer-aided tools in engineering, several hybrid systems are suggested with varying degree of success. In transforming the design concept to a finished product, in particular, smooth interfacing of the design data is crucial to reduce product cost and time to market. Having a product model that contains the complete product description and computer-aided tools that can understand each other are the primary requirements to achieve the interfacing goal. This article discusses the development methodology of hybrid engineering software systems with particular focus on application of soft computing tools such as genetic algorithms and neural networks. Forms of hybridization options are discussed and the applications are elaborated using two case studies. The forefront aims to develop hybrid systems that combine the strong side of each tool, such as, the learning, pattern recognition and classification power of neural networks with the powerful capacity of genetic algorithms in global search and optimization. While most optimization tasks need a certain form of model, there are many processes in the mechanical engineering field that are difficult to model using conventional modeling techniques. The proposed hybrid system solves such difficult-to-model processes and contributes to the effort of smooth interfacing design data to other downstream processes.展开更多
The design and developmental steps for an auxiliary machining module utilizing a database framework are discussed in this work to contribute to an improvement in workshop operations. The underlining objective is for t...The design and developmental steps for an auxiliary machining module utilizing a database framework are discussed in this work to contribute to an improvement in workshop operations. The underlining objective is for the provision of easily accessible and applicable machining operations data to enable and improve job accuracy and conformity to industrial standards. The design of the database for the decision support system is based on a relational frame with Microsoft Access Application package and Microsoft Structured Query Language Server, which serves as the back end of the module. A user interface designed on .Net Framework 3.5 and the windows installer 3.1 running on windows XP operating system serve as the software front end. The developed module is to serve as a decision support system for machine tool operations.展开更多
The deepth and width of CAD application in coal mining equipments need promote furtherly. The information stream method is applied as the main clue to deal with the related technology and problems in research of manuf...The deepth and width of CAD application in coal mining equipments need promote furtherly. The information stream method is applied as the main clue to deal with the related technology and problems in research of manufacturing tools (Fixtures) planning for AFC (mining scraper bars conveyor) using CAD technique.展开更多
Rotation sintering, also known as slush molding, is used to manufacture molded skins, such as dashboards or door interior panels for cars. At present, approximately 80% of such molded skins are manufactured using elec...Rotation sintering, also known as slush molding, is used to manufacture molded skins, such as dashboards or door interior panels for cars. At present, approximately 80% of such molded skins are manufactured using electroforms to achieve the complex free-form surfaces, and surface structures, such as leather graining that the industry demands. The manufacture of these electroforms is, however, time-consuming and expensive. This project aims to replace conventional electroforms with laser-drilled molds. Holes in tool molds should be drilled by using laser radiation as part of an automated process. The system consists of a robot with a fiber-laser beam source. A CAx (computer-aided x) process chain has been developed for this purpose in which the CAD (computer-aided design) data of the tool molds are processed, drill hole fields generated, and a machine-specific RC (robot control) program created. Process-specific fundamentals, such as suitable process windows and process control, have been devised to manufacture holes using fiber laser radiation The advantages of the new laser-drilled tool molds may result in substituting them for conventional electroforms, allowing old markets to be re-entered or additional markets to be created and targeted through new molds or lower costs.展开更多
Metallic implants are commonly used in various orthopaedic surgeries, like fracture fixation, spinal instrumentation, joint replacement and bone tumour surgery.Patients may need to adapt to the fixed dimensions of the...Metallic implants are commonly used in various orthopaedic surgeries, like fracture fixation, spinal instrumentation, joint replacement and bone tumour surgery.Patients may need to adapt to the fixed dimensions of the standard implants. It may result in suboptimal fit to the host bones and possible adverse clinical results. The standard traditional implants may not address the reconstructive challenges such as severe bone deformity or bone loss after implant loosening and bone tumour resection. With the advent of digital technologies in medical imaging, computer programming in three-dimensional(3 D) modelling and computer-assisted tools in precise placement of implants, patient-specific implants(PSI) have gained more attention in complex orthopaedic reconstruction. Additive manufacturing technology, in contrast to the conventional subtractive manufacturing, is a flexible process that can fabricate anatomically conforming implants that match the patients’ anatomy and surgical requirements. Complex internal structures with porous scaffold can also be built to enhance osseointegration for better implant longevity. Although basic studies have suggested that additive manufactured(AM) metal structures are good engineered biomaterials for bone replacement, not much peer-reviewed literature is available on the clinical results of the new types of implants. The article gives an overview of the metallic materials commonly used for fabricating orthopaedic implants, describes the metal-based additive manufacturing technology and the processing chain in metallic implants; discusses the features of AM implants;reports the current status in orthopaedic surgical applications and comments on the challenges of AM implants in orthopaedic practice.展开更多
文摘The necessity and feasibility of an expert system for carbide-tool utilization are analyzed and a practical system named CUES(carbide-tool utilization expert system ) is developed and realized. The system concept, module structure, data management, inference strategy and the interface design of the system are discussed in.detail. The system would be useful not only for the preparation of tool bank of FMS or CIMS, but the for the proper application of cemented carbide tools in conventional machining Processes.
文摘A system architecture of solid-based NC simulation for milling machining is given, the function of which is composed of cutting simulation of different cutters, such as flat-end cutters, ball-end cutters, dome-end cutters, angle cutters and drill cutters, rapid pre-checking of interference, detection of collision, and visualization of over cut in the stock. A new method based on the design model is raised to detect the collision and pre-check the interference during NC milling machining. A special problem about the construction of a cutter′s swept volume, self-intersection is discussed. All the work on the construction, the subtraction and the display of solids is accomplished with the help of ACIS 3-D modeling.
文摘Aim To develop blade mould CAD/CAM system of torque converter. Methods The mouldconsisted of four parts and an interactive computer program was developed to design a blade mould of torque converter based on UG at workstation. Results As compar- ed to manual modeling, it is showed in the application that this means not only improves the accuracy of blade shape and manufacture efficiency of converter, but also reduces costs. Conclusion It is proved that this CAD/CAM system is successful, and it opens up widely prospects for design and manufacture of the blade elementsand their moulds.
文摘The planning method of tool orientation in the five-axis NC machining is studied. The problem of the existing method is analyzed and a new method for generating the global smoothing tool orientation is proposed by introducing the key frame idea in the animation-making. According to the feature of the part, several key tool orientations are set without interference between the tool and the part. Then, these key tool orientations are inter- polated by the spline function. By mapping the surface parameter to the spline parameter, the spline function value is obtained and taken as the tool orientation when generating the CL file. The machining result shows that the proposed method realizes the global smoothing of the tool orientation and the continuity of the rotational speed and the rotational acceleration. It also avoids the shake of the machine tool and improves the machining quality.
文摘Recognizing the drawbacks of stand-alone computer-aided tools in engineering, several hybrid systems are suggested with varying degree of success. In transforming the design concept to a finished product, in particular, smooth interfacing of the design data is crucial to reduce product cost and time to market. Having a product model that contains the complete product description and computer-aided tools that can understand each other are the primary requirements to achieve the interfacing goal. This article discusses the development methodology of hybrid engineering software systems with particular focus on application of soft computing tools such as genetic algorithms and neural networks. Forms of hybridization options are discussed and the applications are elaborated using two case studies. The forefront aims to develop hybrid systems that combine the strong side of each tool, such as, the learning, pattern recognition and classification power of neural networks with the powerful capacity of genetic algorithms in global search and optimization. While most optimization tasks need a certain form of model, there are many processes in the mechanical engineering field that are difficult to model using conventional modeling techniques. The proposed hybrid system solves such difficult-to-model processes and contributes to the effort of smooth interfacing design data to other downstream processes.
文摘The design and developmental steps for an auxiliary machining module utilizing a database framework are discussed in this work to contribute to an improvement in workshop operations. The underlining objective is for the provision of easily accessible and applicable machining operations data to enable and improve job accuracy and conformity to industrial standards. The design of the database for the decision support system is based on a relational frame with Microsoft Access Application package and Microsoft Structured Query Language Server, which serves as the back end of the module. A user interface designed on .Net Framework 3.5 and the windows installer 3.1 running on windows XP operating system serve as the software front end. The developed module is to serve as a decision support system for machine tool operations.
文摘The deepth and width of CAD application in coal mining equipments need promote furtherly. The information stream method is applied as the main clue to deal with the related technology and problems in research of manufacturing tools (Fixtures) planning for AFC (mining scraper bars conveyor) using CAD technique.
文摘Rotation sintering, also known as slush molding, is used to manufacture molded skins, such as dashboards or door interior panels for cars. At present, approximately 80% of such molded skins are manufactured using electroforms to achieve the complex free-form surfaces, and surface structures, such as leather graining that the industry demands. The manufacture of these electroforms is, however, time-consuming and expensive. This project aims to replace conventional electroforms with laser-drilled molds. Holes in tool molds should be drilled by using laser radiation as part of an automated process. The system consists of a robot with a fiber-laser beam source. A CAx (computer-aided x) process chain has been developed for this purpose in which the CAD (computer-aided design) data of the tool molds are processed, drill hole fields generated, and a machine-specific RC (robot control) program created. Process-specific fundamentals, such as suitable process windows and process control, have been devised to manufacture holes using fiber laser radiation The advantages of the new laser-drilled tool molds may result in substituting them for conventional electroforms, allowing old markets to be re-entered or additional markets to be created and targeted through new molds or lower costs.
文摘Metallic implants are commonly used in various orthopaedic surgeries, like fracture fixation, spinal instrumentation, joint replacement and bone tumour surgery.Patients may need to adapt to the fixed dimensions of the standard implants. It may result in suboptimal fit to the host bones and possible adverse clinical results. The standard traditional implants may not address the reconstructive challenges such as severe bone deformity or bone loss after implant loosening and bone tumour resection. With the advent of digital technologies in medical imaging, computer programming in three-dimensional(3 D) modelling and computer-assisted tools in precise placement of implants, patient-specific implants(PSI) have gained more attention in complex orthopaedic reconstruction. Additive manufacturing technology, in contrast to the conventional subtractive manufacturing, is a flexible process that can fabricate anatomically conforming implants that match the patients’ anatomy and surgical requirements. Complex internal structures with porous scaffold can also be built to enhance osseointegration for better implant longevity. Although basic studies have suggested that additive manufactured(AM) metal structures are good engineered biomaterials for bone replacement, not much peer-reviewed literature is available on the clinical results of the new types of implants. The article gives an overview of the metallic materials commonly used for fabricating orthopaedic implants, describes the metal-based additive manufacturing technology and the processing chain in metallic implants; discusses the features of AM implants;reports the current status in orthopaedic surgical applications and comments on the challenges of AM implants in orthopaedic practice.