期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于快速高斯变换的辅助边缘粒子滤波算法 被引量:3
1
作者 李海君 赵国荣 《数据采集与处理》 CSCD 北大核心 2014年第6期998-1002,共5页
针对辅助粒子滤波算法计算量大,滤波效率较低的问题,提出了一种基于快速高斯变换(Fast Gaussian transform,FGT)的辅助边缘粒子滤波算法。该算法假设状态噪声是加性的,并且是高斯的,这样非线性滤波的Chapman-Kolmogorov方程的求解近似... 针对辅助粒子滤波算法计算量大,滤波效率较低的问题,提出了一种基于快速高斯变换(Fast Gaussian transform,FGT)的辅助边缘粒子滤波算法。该算法假设状态噪声是加性的,并且是高斯的,这样非线性滤波的Chapman-Kolmogorov方程的求解近似于执行了核密度估计(Kerner density estimation,KDE),从而可将KDE中的快速算法FGT引入,以提高算法的计算效率和实时性。仿真结果表明,该算法利用少数粒子就可以获得与常规粒子滤波相似的误差,大大提高了计算效率。 展开更多
关键词 粒子滤波 辅助边缘粒子滤波 核密度估计 快速高斯变换
下载PDF
一种基于AMPF和FastSLAM的复合SLAM算法 被引量:3
2
作者 周武 赵春霞 张浩峰 《模式识别与人工智能》 EI CSCD 北大核心 2009年第5期718-725,共8页
为了改进快速同时定位和地图创建(FastSLAM)算法的粒子集性能、提高估计精度,提出基于AMPF和FastSLAM的复合SLAM算法.将辅助边缘粒子滤波器(AMPF)与FastSLAM架构相结合,用AMPF估计机器人位姿,单个粒子的位姿提议分布用无轨迹卡尔曼滤波... 为了改进快速同时定位和地图创建(FastSLAM)算法的粒子集性能、提高估计精度,提出基于AMPF和FastSLAM的复合SLAM算法.将辅助边缘粒子滤波器(AMPF)与FastSLAM架构相结合,用AMPF估计机器人位姿,单个粒子的位姿提议分布用无轨迹卡尔曼滤波估计.设计与AMPF和FastSLAM架构均兼容的采样方法和粒子数据结构,在FastSLAM框架下用扩展卡尔曼滤波递归估计地图.实验表明,该算法的粒子集性能比FastSLAM2.0算法好,并且它的位姿估计精度高于FastSLAM2.0算法.此外,粒子数较少时,该算法的估计精度较高,从而可适当减少粒子数目来提高算法的计算效率. 展开更多
关键词 同时定位与地图创建(SLAM) 辅助边缘粒子滤波器(AMPF) 快速同时定位和地图创建(FastSLAM) 无轨迹卡尔曼滤波器(UKF) 扩展卡尔曼滤波器(EKF)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部