The choice of the particle's distribution model and the consistency of the result are very important for FastSLAM.The improved auxiliary variable model with FastSLAM,and Stirling Interpolation which is used to app...The choice of the particle's distribution model and the consistency of the result are very important for FastSLAM.The improved auxiliary variable model with FastSLAM,and Stirling Interpolation which is used to approximate the nonlinear functions are provided.This approach improves the precision of the approximation for the nonlinear functions,conquers the drawback of the FastSLAM1.0 by using a model ignoring the measurement data,enhances the estimation consistency of the robot pose,and reduces the degradation speed of the particle in FastSLAM algorithm.Simulation results demonstrate the excellence of the proposed algorithm and give the noise parameter influence on the proposed algorithm.展开更多
基金National High-Tech Research and Development Program of China(No.2003AA1Z2130)Science and Technology Project of Zhejiang Province,China(No.2005C11001-02)
文摘The choice of the particle's distribution model and the consistency of the result are very important for FastSLAM.The improved auxiliary variable model with FastSLAM,and Stirling Interpolation which is used to approximate the nonlinear functions are provided.This approach improves the precision of the approximation for the nonlinear functions,conquers the drawback of the FastSLAM1.0 by using a model ignoring the measurement data,enhances the estimation consistency of the robot pose,and reduces the degradation speed of the particle in FastSLAM algorithm.Simulation results demonstrate the excellence of the proposed algorithm and give the noise parameter influence on the proposed algorithm.