Objective:The aim of this study was to measure the leakage by two methods with ion chamber and ready packs film,and to investigate the feasibility and the advantages of using two dosimetry methods for assessing leakag...Objective:The aim of this study was to measure the leakage by two methods with ion chamber and ready packs film,and to investigate the feasibility and the advantages of using two dosimetry methods for assessing leakage radiation around the head of the linear accelerators.Methods:Measurements were performed using a 30 cm3ion chamber;the gantry at 0°,the X-ray head at 0°,the field size at between the central axis and a plane surface at a FSD of 100 as a reference,a series of concentric circles having radii of 50,75,and 100 cm with their common centre at the reference point.The absorbed dose was measured at the reference point,and this would be used as the reference dose.With the diaphragm closed,the measurements were taken along the circumference of the three circles and at 45°intervals.Results:Leakage radiations while the treatment head was in the vertical position varied between 0.016%–0.04%.With the head lying horizontally,leakage radiation was the same order magnitude and varied between 0.02%–0.07%.In the second method,the verification was accomplished by closing the collimator jaws and covering the head of the treatment unit with the ready pack films.The films were marked to permit the determination of their positions on the machine after exposed and processed.With the diaphragm closed,and the ready packs films around the linear accelerator the beam turned on for 2500 cGy(2500 MU).The optical density of these films was measured and compared with this of the reference dose.Leakage radiation varied according to the film positions and the magnitude of leakage was between 0.005%–0.075%.Conclusion:The differences between the values of the leakage radiation levels observed at different measurement points do not only reflect differences in the effective shielding thickness of the head wall,but are also related to differences in the distances between the target and the measurement points.The experimental errors involved in dosimetric measurement also contribute to such differences.展开更多
Objective: The aim of our study was to assess and compare the potential dosimetric advantages and drawbacks of photon beams and electron beams as a boost for the tumor bed in superficial and deep seated early-stage b...Objective: The aim of our study was to assess and compare the potential dosimetric advantages and drawbacks of photon beams and electron beams as a boost for the tumor bed in superficial and deep seated early-stage breast cancer. Methods: We planned CTs of 10 women with early breast cancer underwent breast conservative surgery were selected. Tumor bed was defined as superficial and deep with a cut of point 4 cm, those with less than 4 cm were defined as superficial tumors representing 4 patients and those with depth of 4 cm or more were classified as deep tumors representing 6 patients. The clinical target volume (C'I'V) was defined as the area of architectural .distortion surrounded by surgical clips. The plan- ning target volume (PTV) was the C'I'V plus margin 1 cm. A dose of 10 Gy.in 2 Gy fractions was given concurrently at the last week of treatment. Organs at risk (OARs) were heart, lungs, contra-lateral breast and a 5 mm thick skin segment of the breast surface. Dose volume histograms were defined to quantify the quality of concurrent treatment plans assessing target coverage and sparing OARs. The following treatment techniques were assessed: photon beam with 3D-conformal technique and a single electron beam. Results: For superficial tumors better coverage for CTV and P'I'V with good homogeneity with better CI was found for the 3D conformal radiotherapy (3DCRT) but with no significant planning objectives over electron beam. For deep tumors, the 3DCRT met the planning objectives for C'I'V, PTV with better coverage and fewer hot spots with better homogeneity and CI. For superficial tumors, OARs were spared by both techniques with better sparing for the electron beam where as for deep tumors also OARs were well spared by both techniques. Conclusion: Boosting the tumor bed in early- stage breast cancer with optimized photon may be preferred to electron beam for both superficial and deep tumors. The OARs dose sparing effect may allow for a potential long-term toxicity risk reduction and better cosmesis.展开更多
文摘Objective:The aim of this study was to measure the leakage by two methods with ion chamber and ready packs film,and to investigate the feasibility and the advantages of using two dosimetry methods for assessing leakage radiation around the head of the linear accelerators.Methods:Measurements were performed using a 30 cm3ion chamber;the gantry at 0°,the X-ray head at 0°,the field size at between the central axis and a plane surface at a FSD of 100 as a reference,a series of concentric circles having radii of 50,75,and 100 cm with their common centre at the reference point.The absorbed dose was measured at the reference point,and this would be used as the reference dose.With the diaphragm closed,the measurements were taken along the circumference of the three circles and at 45°intervals.Results:Leakage radiations while the treatment head was in the vertical position varied between 0.016%–0.04%.With the head lying horizontally,leakage radiation was the same order magnitude and varied between 0.02%–0.07%.In the second method,the verification was accomplished by closing the collimator jaws and covering the head of the treatment unit with the ready pack films.The films were marked to permit the determination of their positions on the machine after exposed and processed.With the diaphragm closed,and the ready packs films around the linear accelerator the beam turned on for 2500 cGy(2500 MU).The optical density of these films was measured and compared with this of the reference dose.Leakage radiation varied according to the film positions and the magnitude of leakage was between 0.005%–0.075%.Conclusion:The differences between the values of the leakage radiation levels observed at different measurement points do not only reflect differences in the effective shielding thickness of the head wall,but are also related to differences in the distances between the target and the measurement points.The experimental errors involved in dosimetric measurement also contribute to such differences.
文摘Objective: The aim of our study was to assess and compare the potential dosimetric advantages and drawbacks of photon beams and electron beams as a boost for the tumor bed in superficial and deep seated early-stage breast cancer. Methods: We planned CTs of 10 women with early breast cancer underwent breast conservative surgery were selected. Tumor bed was defined as superficial and deep with a cut of point 4 cm, those with less than 4 cm were defined as superficial tumors representing 4 patients and those with depth of 4 cm or more were classified as deep tumors representing 6 patients. The clinical target volume (C'I'V) was defined as the area of architectural .distortion surrounded by surgical clips. The plan- ning target volume (PTV) was the C'I'V plus margin 1 cm. A dose of 10 Gy.in 2 Gy fractions was given concurrently at the last week of treatment. Organs at risk (OARs) were heart, lungs, contra-lateral breast and a 5 mm thick skin segment of the breast surface. Dose volume histograms were defined to quantify the quality of concurrent treatment plans assessing target coverage and sparing OARs. The following treatment techniques were assessed: photon beam with 3D-conformal technique and a single electron beam. Results: For superficial tumors better coverage for CTV and P'I'V with good homogeneity with better CI was found for the 3D conformal radiotherapy (3DCRT) but with no significant planning objectives over electron beam. For deep tumors, the 3DCRT met the planning objectives for C'I'V, PTV with better coverage and fewer hot spots with better homogeneity and CI. For superficial tumors, OARs were spared by both techniques with better sparing for the electron beam where as for deep tumors also OARs were well spared by both techniques. Conclusion: Boosting the tumor bed in early- stage breast cancer with optimized photon may be preferred to electron beam for both superficial and deep tumors. The OARs dose sparing effect may allow for a potential long-term toxicity risk reduction and better cosmesis.