In order to improve the efficiency of heating and the uniformity of temperature distribution in recycling asphalt mixtures, a pyramidal radiation heater is designed. The principles of designing horn surface size and a...In order to improve the efficiency of heating and the uniformity of temperature distribution in recycling asphalt mixtures, a pyramidal radiation heater is designed. The principles of designing horn surface size and antenna length are established according to the law of energy conservation and microwave antenna radiation theory. Modeling and simulation are carried out using IE3D software. The simulation results demonstrate that, with a fixed horn surface size, the shortened electric antenna length is the main factor leading to the improved heating uniformity. On the other hand, with a fixed antenna length and diminished surface size, the standing wave ratio decreases with the improved radiation efficiency. Furthermore, the efficiency of radiation drops with increased distance between the horn surface and the asphalt pavement. Microwave heating experiments are carried out using this type of heater. The temperature distribution of asphalt samples is obtained by the grid temperature measurement method, and Matlab simulation is performed. The experimental results are in good agreement with the simulation.展开更多
Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal tem...Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal temperature and humidity, heating from solar radiation in summer at normal temperature and high humidity after rain, humidifying from brash in summer at high temperature and normal humidity. The results show that, in summer, the largest temperature difference between external and internal surface of the 28 mm-thick bamboo plywood wall is 11.73℃ (at 15:40) and the largest strain difference is 136 μm/m (at 18:50), both in ambient and indoor conditioned environment. In heating process, lengthways of the wall surface are in contracting strain while transverse ways are in expanding strain at initial stage and in contracting strain during later period. When the high temperature wall is humidified by rain, the surface temperature drops, moisture content increases and the expanding strain is presented on the surface during the whole process. Temperature and moisture content are two important factors which affect thermal and moisture stress (TMS) of the bamboo structure wall. The TMS is not only related to temperature and moisture content, but also greatly affected by temperature gradient, moisture content gradient and rates of changing.展开更多
基金The Key Project of Science and Technology of Ministry of Education(No.03081,105085)the SciTech Achievements Transformation Program of Jiangsu Province(No.BA2006068)
文摘In order to improve the efficiency of heating and the uniformity of temperature distribution in recycling asphalt mixtures, a pyramidal radiation heater is designed. The principles of designing horn surface size and antenna length are established according to the law of energy conservation and microwave antenna radiation theory. Modeling and simulation are carried out using IE3D software. The simulation results demonstrate that, with a fixed horn surface size, the shortened electric antenna length is the main factor leading to the improved heating uniformity. On the other hand, with a fixed antenna length and diminished surface size, the standing wave ratio decreases with the improved radiation efficiency. Furthermore, the efficiency of radiation drops with increased distance between the horn surface and the asphalt pavement. Microwave heating experiments are carried out using this type of heater. The temperature distribution of asphalt samples is obtained by the grid temperature measurement method, and Matlab simulation is performed. The experimental results are in good agreement with the simulation.
基金Project(50878078) supported by the National Natural Science Foundation of China
文摘Thermal and moisture characteristics of the bamboo structure wall were tested in natural climate and three representative variation processes of heat and moisture: heating from solar radiation in summer at normal temperature and humidity, heating from solar radiation in summer at normal temperature and high humidity after rain, humidifying from brash in summer at high temperature and normal humidity. The results show that, in summer, the largest temperature difference between external and internal surface of the 28 mm-thick bamboo plywood wall is 11.73℃ (at 15:40) and the largest strain difference is 136 μm/m (at 18:50), both in ambient and indoor conditioned environment. In heating process, lengthways of the wall surface are in contracting strain while transverse ways are in expanding strain at initial stage and in contracting strain during later period. When the high temperature wall is humidified by rain, the surface temperature drops, moisture content increases and the expanding strain is presented on the surface during the whole process. Temperature and moisture content are two important factors which affect thermal and moisture stress (TMS) of the bamboo structure wall. The TMS is not only related to temperature and moisture content, but also greatly affected by temperature gradient, moisture content gradient and rates of changing.