Present numerical study examines the heat and mass transfer characteristics of magneto-hydrodynamic Casson fluid flow between two parallel plates under the influence of thermal radiation,internal heat generation or ab...Present numerical study examines the heat and mass transfer characteristics of magneto-hydrodynamic Casson fluid flow between two parallel plates under the influence of thermal radiation,internal heat generation or absorption and Joule dissipation effects with homogeneous first order chemical reaction.The non-Newtonian behaviour of Casson fluid is distinguished from those of Newtonian fluids by considering the well-established rheological Casson fluid flow model.The governing partial differential equations for the unsteady two-dimensional squeezing flow with heat and mass transfer of a Casson fluid are highly nonlinear and coupled in nature.The nonlinear ordinary differential equations governing the squeezing flow are obtained by imposing the similarity transformations on the conservation laws.The resulting equations have been solved by using two numerical techniques,namely Runge-Kutta fourth order integration scheme with shooting technique and bvp4c Matlab solver.The comparison between both the techniques is provided.Further,for the different set physical parameters,the numerical results are obtained and presented in the form of graphs and tables.However,in view of industrial use,the power required to generate the movement of the parallel plates is considerably reduced for the negative values of squeezing number.From the present investigation it is noticed that,due to the presence of stronger Lorentz forces,the temperature and velocity fields eventually suppressed for the enhancing values of Hartmann number.Also,higher values of squeezing number diminish the squeezing force on the fluid flow which in turn reduces the thermal field.Further,the destructive nature of the chemical reaction magnifies the concentration field;whereas constructive chemical reaction decreases the concentration field.The present numerical solutions are compared with previously published results and show the good agreement.展开更多
A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface...A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.展开更多
From the viewpoint of field synergy principle and dipole radiation theory, the interaction between the incident thermal radiation wave and materials is analyzed to reveal the mechanism of selective absorption of incid...From the viewpoint of field synergy principle and dipole radiation theory, the interaction between the incident thermal radiation wave and materials is analyzed to reveal the mechanism of selective absorption of incident thermal radiation. It is shown that the frequency of the incident thermal radiation and the damping constant of damping oscillators in materials are of vital importance for the thermal radiation properties (reflectivity, absorptivity, transmissivity, etc.) of materials.展开更多
文摘Present numerical study examines the heat and mass transfer characteristics of magneto-hydrodynamic Casson fluid flow between two parallel plates under the influence of thermal radiation,internal heat generation or absorption and Joule dissipation effects with homogeneous first order chemical reaction.The non-Newtonian behaviour of Casson fluid is distinguished from those of Newtonian fluids by considering the well-established rheological Casson fluid flow model.The governing partial differential equations for the unsteady two-dimensional squeezing flow with heat and mass transfer of a Casson fluid are highly nonlinear and coupled in nature.The nonlinear ordinary differential equations governing the squeezing flow are obtained by imposing the similarity transformations on the conservation laws.The resulting equations have been solved by using two numerical techniques,namely Runge-Kutta fourth order integration scheme with shooting technique and bvp4c Matlab solver.The comparison between both the techniques is provided.Further,for the different set physical parameters,the numerical results are obtained and presented in the form of graphs and tables.However,in view of industrial use,the power required to generate the movement of the parallel plates is considerably reduced for the negative values of squeezing number.From the present investigation it is noticed that,due to the presence of stronger Lorentz forces,the temperature and velocity fields eventually suppressed for the enhancing values of Hartmann number.Also,higher values of squeezing number diminish the squeezing force on the fluid flow which in turn reduces the thermal field.Further,the destructive nature of the chemical reaction magnifies the concentration field;whereas constructive chemical reaction decreases the concentration field.The present numerical solutions are compared with previously published results and show the good agreement.
基金Project(N110204015)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2012M510075)supported by the China Postdoctoral Science Foundation
文摘A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.
文摘From the viewpoint of field synergy principle and dipole radiation theory, the interaction between the incident thermal radiation wave and materials is analyzed to reveal the mechanism of selective absorption of incident thermal radiation. It is shown that the frequency of the incident thermal radiation and the damping constant of damping oscillators in materials are of vital importance for the thermal radiation properties (reflectivity, absorptivity, transmissivity, etc.) of materials.