Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD...Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD)methods are assessed based on five years of 1-min surface irradiance data at Xianghe—a heavily polluted station on the North China Plain.Total-sky imager(TSI)discrimination results corrected by manual checks are used as the benchmark for the evaluation.The performance heavily relies on the criteria adopted by the CSD methods.Those with higher cloudy-sky detection accuracy rates produce lower clear-sky accuracy rates,and vice versa.A general tendency in common among all CSD methods is the detection accuracy deteriorates when aerosol loading increases.Nearly all criteria adopted in CSD methods are too strict to detect clear skies under polluted conditions,which is more severe if clear-sky irradiance is not properly estimated.The mean true positive rate(CSD method correctly detects clear sky)decreases from 45%for aerosol optical depth(AOD)≤0.2%to 6%for AOD>0.5.The results clearly indicate that CSD methods in a highly polluted region still need further improvements.展开更多
Using a microwave radiative transfer (MWRT) model with microwave brightness temperatures (TBs) observed from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), an indirect approach evaluate...Using a microwave radiative transfer (MWRT) model with microwave brightness temperatures (TBs) observed from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), an indirect approach evaluated hydrometeors generated from the Weather Research and Forecasting (WRY) model in the process of CHABA typhoon in August 2004. This study compares the simulated TBs generated from the microwave radioactive transfer model connected to the WRF model with the observed TBs derived from TMI and analyzes the differences between these TBs. The results indicate that the WRF model underestimates the amount and area of liquid and ice hydrometeors inside the typhoon center. The results also indicate relatively better agreement between the simulated and the observed TBs in the vertical polarization than in the horizontal polarization.展开更多
A retrieval method of cloud top heights using polarizing remote sensing is proposed in this paper. Using the vector radiative transfer model in a coupled atmosphere-ocean system, the factors influencing the upwelling ...A retrieval method of cloud top heights using polarizing remote sensing is proposed in this paper. Using the vector radiative transfer model in a coupled atmosphere-ocean system, the factors influencing the upwelling linear polarizing radiance at top-of-atmosphere are analyzed, which show that the upwelling linear polarizing radiance varies remarkably with the cloud top height, but has negligible sensitivity with cloud albedo and aerosol scattering above the cloud layer. Based on this property, a cloud top height retrieval algorithm using polarizing remote sensing was developed. The algorithm has been applied to the polarizing remote sensing data of Polarization and Directionality of the Earth's Reflectances-2 (POLDER-2). The retrieved cloud top height from POLDER-2 compares well with the Moderate Resolution Imaging Spectroradiometer (MODIS) operational product with a bias of 0.83 km and standard deviation of 1.56 km.展开更多
Volcanic ash cloud has serious impacts on aviation.With volcanic ash dispersion,it also has a profound and long-term impact on climate and the environment.A new volcanic ash cloud detecting method (SWIR-TIR Volcanic A...Volcanic ash cloud has serious impacts on aviation.With volcanic ash dispersion,it also has a profound and long-term impact on climate and the environment.A new volcanic ash cloud detecting method (SWIR-TIR Volcanic Ash method,STVA) is presented that uses satellite images of Medium Resolution Spectral Imager (MERSI) and Visible and Infrared Radiometer (VIRR) on board the second generation Polar-Orbiting meteorological satellite of China (FY-3A).STVA is applied in detecting Iceland's Eyjafjallajokull volcano eruption.Compared with the traditional Split Window Temperature Difference method (SWTD),the results show that STVA is more sensitive to volcanic ash cloud than SWTD and can fairly extract volcanic ash information from the background of meteorological cloud and the ocean.Ash Radiance Index (ARI) and Absorbing Aerosol Index (AAI) derived from Metop-A satellite images are used to validate the performance of STVA.It is shown that STVA provides similar results with ARI and AAI.FY-3A/MERSI,VIRR and Terra /MODIS data are used to test STVA and SWTD.It is demonstrated that STVA derived from FY-3A satellite data is more effective in complicated meteorological conditions.This study shows great potential of using China's own new generation satellite data in future global volcanic ash cloud monitoring operation.展开更多
基金supported by the National Key R&D Program of China grant number 2017YFA0603504the Strategic Priority Research Program of the Chinese Academy of Sciences grant number XDA17010101the National Natural Science Foundation of Chinagrant number 41875183。
文摘Surface irradiance measurements with high temporal resolution can be used to detect clear skies,which is a critical step for further study,such as aerosol and cloud radiative effects.Twenty-one clear-sky detection(CSD)methods are assessed based on five years of 1-min surface irradiance data at Xianghe—a heavily polluted station on the North China Plain.Total-sky imager(TSI)discrimination results corrected by manual checks are used as the benchmark for the evaluation.The performance heavily relies on the criteria adopted by the CSD methods.Those with higher cloudy-sky detection accuracy rates produce lower clear-sky accuracy rates,and vice versa.A general tendency in common among all CSD methods is the detection accuracy deteriorates when aerosol loading increases.Nearly all criteria adopted in CSD methods are too strict to detect clear skies under polluted conditions,which is more severe if clear-sky irradiance is not properly estimated.The mean true positive rate(CSD method correctly detects clear sky)decreases from 45%for aerosol optical depth(AOD)≤0.2%to 6%for AOD>0.5.The results clearly indicate that CSD methods in a highly polluted region still need further improvements.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q11-04 and KZCX2-EW-QN507)the National Basic Research Program of China (973 Program,Grant No. 2010CB428601)the National Natural Science Foundation of China (Grant Nos. 40730950 and 41075041)
文摘Using a microwave radiative transfer (MWRT) model with microwave brightness temperatures (TBs) observed from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), an indirect approach evaluated hydrometeors generated from the Weather Research and Forecasting (WRY) model in the process of CHABA typhoon in August 2004. This study compares the simulated TBs generated from the microwave radioactive transfer model connected to the WRF model with the observed TBs derived from TMI and analyzes the differences between these TBs. The results indicate that the WRF model underestimates the amount and area of liquid and ice hydrometeors inside the typhoon center. The results also indicate relatively better agreement between the simulated and the observed TBs in the vertical polarization than in the horizontal polarization.
基金supported by the National Basic Research Program of China (973 Program, Grant No. 2009CB421202)the National Natural Science Foundation of China (Grant No. 40706061)the National High Technology Research and Development Program of China (863 Program, Grant Nos. 2007AA12Z137 and 2008AA09Z104)
文摘A retrieval method of cloud top heights using polarizing remote sensing is proposed in this paper. Using the vector radiative transfer model in a coupled atmosphere-ocean system, the factors influencing the upwelling linear polarizing radiance at top-of-atmosphere are analyzed, which show that the upwelling linear polarizing radiance varies remarkably with the cloud top height, but has negligible sensitivity with cloud albedo and aerosol scattering above the cloud layer. Based on this property, a cloud top height retrieval algorithm using polarizing remote sensing was developed. The algorithm has been applied to the polarizing remote sensing data of Polarization and Directionality of the Earth's Reflectances-2 (POLDER-2). The retrieved cloud top height from POLDER-2 compares well with the Moderate Resolution Imaging Spectroradiometer (MODIS) operational product with a bias of 0.83 km and standard deviation of 1.56 km.
基金supported by National Basic Research Program of China (Grant No. 2010CB950700)
文摘Volcanic ash cloud has serious impacts on aviation.With volcanic ash dispersion,it also has a profound and long-term impact on climate and the environment.A new volcanic ash cloud detecting method (SWIR-TIR Volcanic Ash method,STVA) is presented that uses satellite images of Medium Resolution Spectral Imager (MERSI) and Visible and Infrared Radiometer (VIRR) on board the second generation Polar-Orbiting meteorological satellite of China (FY-3A).STVA is applied in detecting Iceland's Eyjafjallajokull volcano eruption.Compared with the traditional Split Window Temperature Difference method (SWTD),the results show that STVA is more sensitive to volcanic ash cloud than SWTD and can fairly extract volcanic ash information from the background of meteorological cloud and the ocean.Ash Radiance Index (ARI) and Absorbing Aerosol Index (AAI) derived from Metop-A satellite images are used to validate the performance of STVA.It is shown that STVA provides similar results with ARI and AAI.FY-3A/MERSI,VIRR and Terra /MODIS data are used to test STVA and SWTD.It is demonstrated that STVA derived from FY-3A satellite data is more effective in complicated meteorological conditions.This study shows great potential of using China's own new generation satellite data in future global volcanic ash cloud monitoring operation.