The pyrolysis of n-butane and i-butane at low pressure was investigated from 823-1823 K in an electrically heated flow reactor using synchrotron vacuum ultraviolet photoionization mass spectrometry. More than 20 speci...The pyrolysis of n-butane and i-butane at low pressure was investigated from 823-1823 K in an electrically heated flow reactor using synchrotron vacuum ultraviolet photoionization mass spectrometry. More than 20 species, especially several radicals and isomers, were detected and identified from the measurements of photoionization efficiency (PIE) spectra. Based on the mass spectrometric analysis, the characteristics of n-butane and i-butane pyrolysis were discussed, which provided experimental evidences for the discussion of decomposition pathways of butane isomers. It is concluded that the isomeric structures of n-butane and i-butane have strong influence on their main decomposition pathways, and lead to dramatic differences in their mass spectra and PIE spectra such as the different dominant products and isomeric structures of butene products. Furthermore, compared with n-butane,i-butane can produce strong signals of benzene at low temperature in its pyrolysis due to the enhanced formation of benzene precursors like propargyl and C4 species, which provides experimental clues to explain the higher sooting tendencies of iso-alkanes than n-alkanes.展开更多
The temperature of a solar cell subjected to the incident global solar radiation as a function of the local day time is determined. A heat balance equation is solved considering the heat losses due to convection and t...The temperature of a solar cell subjected to the incident global solar radiation as a function of the local day time is determined. A heat balance equation is solved considering the heat losses due to convection and thermal radiation. The cell efficiency is estimated as a measure of its performance. The results reveal that the temperature within the cell attains significant values. Nevertheless, the temperature dependence of its efficiency along the day time is not pronouncing. It slightly decreases with temperature.展开更多
The present study deals with analytical investigation of temperature of a single burning iron particle.Three mathematical methods including AGM(Akbari-Ganji’s method),CM(Collocation method)and GM(Galerkin Method)are ...The present study deals with analytical investigation of temperature of a single burning iron particle.Three mathematical methods including AGM(Akbari-Ganji’s method),CM(Collocation method)and GM(Galerkin Method)are applied to solving non-linear differential governing equation and effectiveness of these methods is examined as well.For further investigation,forth order Runge-Kutta approach,a numerical method,is used to validate the obtained analytical results.In the present study,the developed mathematical model takes into account the effects of thermal radiation,convective heat transfer and particle density variations during combustion process.Due to particles’small size and high thermal conductivity,the system is assumed to be lumped in which the particle temperature does not change within the body and all of its regions are at the same temperature.The temperature distributions obtained by analytical methods have satisfactory agreement with numerical outputs.Finally,the results indicate that AGM is a more appropriate method than GM and CM due to its lower mean relative error and less run time.展开更多
Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module o...Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module of the procedure consisted of Perry 5GG weighted sum gray gases model for spectral property calculation and discrete ordinates method S4 scheme for radiative transfer computation, while the flow field was computed using the Favrè average conservative Navier-Stokes(N-S) equations, in conjunction with Menter's k-ω SST two-equation model. A series of 2D supersonic nonreactive turbulent channel flows of radiative participants with selective parameters were simulated for validation purpose. Radiative characteristics in DLR hydrogen fueled and NASA SCHOLAR ethylene fueled scramjets were numerically studied using the developed procedure. The results indicated that the variations of spatial distributions of the radiative source and total absorption coefficient are highly consistent with those of the temperature and radiative participants, while the spatial distribution of the incident radiation spreads wider. It also demonstrated that the convective heating is significantly affected by the complexity of the flow field, such as the shock wave/boundary layer interactions, while the radiative heating is simply an integral effect of the whole flow field. Although the radiative heating in the combustion chambers reaches a certain level, an order of magnitude of 10 k W/m2, it still contributes little to the total heat transfer(<7%).展开更多
基金This work is supported by the National. Natural Science Foundation of China (No.51106146, No.51036007, No.U1232127), the China Postdoctoral Science Foundation (No.20100480047 and No.201104326), the Chinese Universities Scientific Fund (No.WK2310000010), the Anhui Science & Technology Department (No.l1040606Q49), and the Chinese Academy of Sciences.
文摘The pyrolysis of n-butane and i-butane at low pressure was investigated from 823-1823 K in an electrically heated flow reactor using synchrotron vacuum ultraviolet photoionization mass spectrometry. More than 20 species, especially several radicals and isomers, were detected and identified from the measurements of photoionization efficiency (PIE) spectra. Based on the mass spectrometric analysis, the characteristics of n-butane and i-butane pyrolysis were discussed, which provided experimental evidences for the discussion of decomposition pathways of butane isomers. It is concluded that the isomeric structures of n-butane and i-butane have strong influence on their main decomposition pathways, and lead to dramatic differences in their mass spectra and PIE spectra such as the different dominant products and isomeric structures of butene products. Furthermore, compared with n-butane,i-butane can produce strong signals of benzene at low temperature in its pyrolysis due to the enhanced formation of benzene precursors like propargyl and C4 species, which provides experimental clues to explain the higher sooting tendencies of iso-alkanes than n-alkanes.
文摘The temperature of a solar cell subjected to the incident global solar radiation as a function of the local day time is determined. A heat balance equation is solved considering the heat losses due to convection and thermal radiation. The cell efficiency is estimated as a measure of its performance. The results reveal that the temperature within the cell attains significant values. Nevertheless, the temperature dependence of its efficiency along the day time is not pronouncing. It slightly decreases with temperature.
文摘The present study deals with analytical investigation of temperature of a single burning iron particle.Three mathematical methods including AGM(Akbari-Ganji’s method),CM(Collocation method)and GM(Galerkin Method)are applied to solving non-linear differential governing equation and effectiveness of these methods is examined as well.For further investigation,forth order Runge-Kutta approach,a numerical method,is used to validate the obtained analytical results.In the present study,the developed mathematical model takes into account the effects of thermal radiation,convective heat transfer and particle density variations during combustion process.Due to particles’small size and high thermal conductivity,the system is assumed to be lumped in which the particle temperature does not change within the body and all of its regions are at the same temperature.The temperature distributions obtained by analytical methods have satisfactory agreement with numerical outputs.Finally,the results indicate that AGM is a more appropriate method than GM and CM due to its lower mean relative error and less run time.
基金supported by the National Natural Science Foundation of China(Grant No.11202014)
文摘Following an order analysis of key parameters, a decoupled procedure for simulation of convection-radiation heat transfer problems in supersonic combustion ramjet(scramjet) engine was developed. The radiation module of the procedure consisted of Perry 5GG weighted sum gray gases model for spectral property calculation and discrete ordinates method S4 scheme for radiative transfer computation, while the flow field was computed using the Favrè average conservative Navier-Stokes(N-S) equations, in conjunction with Menter's k-ω SST two-equation model. A series of 2D supersonic nonreactive turbulent channel flows of radiative participants with selective parameters were simulated for validation purpose. Radiative characteristics in DLR hydrogen fueled and NASA SCHOLAR ethylene fueled scramjets were numerically studied using the developed procedure. The results indicated that the variations of spatial distributions of the radiative source and total absorption coefficient are highly consistent with those of the temperature and radiative participants, while the spatial distribution of the incident radiation spreads wider. It also demonstrated that the convective heating is significantly affected by the complexity of the flow field, such as the shock wave/boundary layer interactions, while the radiative heating is simply an integral effect of the whole flow field. Although the radiative heating in the combustion chambers reaches a certain level, an order of magnitude of 10 k W/m2, it still contributes little to the total heat transfer(<7%).