Applying Parikh's quantum tunneling model, we study the quantum tunneling radiation of Reissne- Nordstrom de Sitter black hole with a global monopole. The result shows that the tunneling rates at the event horizon an...Applying Parikh's quantum tunneling model, we study the quantum tunneling radiation of Reissne- Nordstrom de Sitter black hole with a global monopole. The result shows that the tunneling rates at the event horizon and the cosmic horizon are related to Bekenstein-Hawking entropy if we take the energy conservation into consideration, and the true radiate spectrum is not precisely thermal.展开更多
Based on particles in a dynamical geometry, extending the Parikh 's method of quantum tunneling, radiation, we deeply investigate the quantum tunneling radiation of Kerr-NUT bhck hole. When self-gravitating action, e...Based on particles in a dynamical geometry, extending the Parikh 's method of quantum tunneling, radiation, we deeply investigate the quantum tunneling radiation of Kerr-NUT bhck hole. When self-gravitating action, energy conservation, and angular momentum conservation are taken into account, the emission rate of the particle on the event horizon is related to the change of Bekenstein-Hawking entropy and the emission spectrum is not precisely thermal, but is consistent with an underlying unitary theory.展开更多
For Hawking radiation, treated as a tunneling process, the no-hair theorem of black hole together with the law of energy conservation is utilized to postulate that the tunneling rate only depends on the external quali...For Hawking radiation, treated as a tunneling process, the no-hair theorem of black hole together with the law of energy conservation is utilized to postulate that the tunneling rate only depends on the external qualities(e.g., the mass for the Schwarzschild black hole) and the energy of the radiated particle. This postulate is justified by the WKB approximation for calculating the tunneling probability. Based on this postulate, a general formula for the tunneling probability is derived without referring to the concrete form of black hole metric. This formula implies an intrinsic correlation between the successive processes of the black hole radiation of two or more particles. It also suggests a kind of entropy conservation and thus resolves the puzzle of black hole information loss in some sense.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No. 10347008
文摘Applying Parikh's quantum tunneling model, we study the quantum tunneling radiation of Reissne- Nordstrom de Sitter black hole with a global monopole. The result shows that the tunneling rates at the event horizon and the cosmic horizon are related to Bekenstein-Hawking entropy if we take the energy conservation into consideration, and the true radiate spectrum is not precisely thermal.
基金The project supported by National Natural Science Foundation of China under Grant No. 10347008 and Science Foundation for Fundamental Research of Sichuan Province under Grand No. 05JY029-092. We would like to thank Prof. Zhang Jing-Yi and Dr. Ren Jun for their beneficial discussions.
文摘Based on particles in a dynamical geometry, extending the Parikh 's method of quantum tunneling, radiation, we deeply investigate the quantum tunneling radiation of Kerr-NUT bhck hole. When self-gravitating action, energy conservation, and angular momentum conservation are taken into account, the emission rate of the particle on the event horizon is related to the change of Bekenstein-Hawking entropy and the emission spectrum is not precisely thermal, but is consistent with an underlying unitary theory.
基金Supported by National Natural Science Foundation of China and the National Fundamental Research Programs of China under Grant Nos. 10874091 and 2006CB921205
文摘For Hawking radiation, treated as a tunneling process, the no-hair theorem of black hole together with the law of energy conservation is utilized to postulate that the tunneling rate only depends on the external qualities(e.g., the mass for the Schwarzschild black hole) and the energy of the radiated particle. This postulate is justified by the WKB approximation for calculating the tunneling probability. Based on this postulate, a general formula for the tunneling probability is derived without referring to the concrete form of black hole metric. This formula implies an intrinsic correlation between the successive processes of the black hole radiation of two or more particles. It also suggests a kind of entropy conservation and thus resolves the puzzle of black hole information loss in some sense.