In this paper,a multi-loop internal model control(IMC) scheme in conjunction with feed-forward strategy based on the dynamic partial least squares(DyPLS) framework is proposed.Unlike the traditional methods to decoupl...In this paper,a multi-loop internal model control(IMC) scheme in conjunction with feed-forward strategy based on the dynamic partial least squares(DyPLS) framework is proposed.Unlike the traditional methods to decouple multi-input multi-output(MIMO) systems,the DyPLS framework automatically decomposes the MIMO process into a multi-loop system in the PLS subspace in the modeling stage.The dynamic filters with identical structure are used to build the dynamic PLS model,which retains the orthogonality among the latent variables.To address the model mismatch problem,an off-line least squares method is applied to obtain a set of optimal filter parameters in each latent space.Without losing the merits of model-based control,a simple and easy-tuned IMC structure is readily carried over to the dynamic PLS control framework.In addition,by projecting the measurable disturbance into the latent subspace,a multi-loop feed-forward control is yielded to achieve better performance for disturbance rejection.Simulation results of a distillation column are used to further demonstrate this new strategy outperforms conventional control schemes in servo behavior and disturbance rejection.展开更多
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w...An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.展开更多
This paper deals with a nonlinear control strategy of induction motor that combines an input-output linearization control technique and a nonlinear observer design. It is well known that induction motors are the most ...This paper deals with a nonlinear control strategy of induction motor that combines an input-output linearization control technique and a nonlinear observer design. It is well known that induction motors are the most widely used motors in electrical appliances, industrial control and automation. However, it is also known that induction motor control is a complex task that is due to its nonlinear characteristics. Two main features of the proposed approach are worth to be mentioned. Firstly, a nonlinear control is carried out using a nonlinear feedback linearization technique involving non available state variable measurements of the induction motor system. Secondly, a nonlinear observer is designed to estimate these pertinent but unmeasurable state variables of the machine. The circle-criterion approach is performed to compute the observer gain matrices as a solution of LMI (linear matrix inequalities) that ensure the stability conditions, in the sense of Lyapunov, of the estimated state error dynamics of the designed observer. Simulation results are presented to validate the effectiveness of the proposed approach.展开更多
We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some...We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some common problems in utilizing multiple input multiple output(MIMO) under the 802.11 protocol,e.g.,how to deploy preamble(training sequence) used for channel estimation and how to enable simultaneous data transmissions,and facilitates two simultaneous uplink data transmissions via a cross-layer approach. Furthermore,we develop a 3D discrete-time Markov model to analyze the per-formance of the proposed WLAN scheme. The analytical results are verified by simulation,and numerical results show that the system throughput can be significantly improved by our proposed scheme as compared with conventional schemes.展开更多
基金Supported by the National Natural Science Foundation of China(60574047) the National High Technology Research and Development Program of China(2007AA04Z168 2009AA04Z154) the Research Fund for the Doctoral Program of Higher Education in China(20050335018)
文摘In this paper,a multi-loop internal model control(IMC) scheme in conjunction with feed-forward strategy based on the dynamic partial least squares(DyPLS) framework is proposed.Unlike the traditional methods to decouple multi-input multi-output(MIMO) systems,the DyPLS framework automatically decomposes the MIMO process into a multi-loop system in the PLS subspace in the modeling stage.The dynamic filters with identical structure are used to build the dynamic PLS model,which retains the orthogonality among the latent variables.To address the model mismatch problem,an off-line least squares method is applied to obtain a set of optimal filter parameters in each latent space.Without losing the merits of model-based control,a simple and easy-tuned IMC structure is readily carried over to the dynamic PLS control framework.In addition,by projecting the measurable disturbance into the latent subspace,a multi-loop feed-forward control is yielded to achieve better performance for disturbance rejection.Simulation results of a distillation column are used to further demonstrate this new strategy outperforms conventional control schemes in servo behavior and disturbance rejection.
文摘An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.
文摘This paper deals with a nonlinear control strategy of induction motor that combines an input-output linearization control technique and a nonlinear observer design. It is well known that induction motors are the most widely used motors in electrical appliances, industrial control and automation. However, it is also known that induction motor control is a complex task that is due to its nonlinear characteristics. Two main features of the proposed approach are worth to be mentioned. Firstly, a nonlinear control is carried out using a nonlinear feedback linearization technique involving non available state variable measurements of the induction motor system. Secondly, a nonlinear observer is designed to estimate these pertinent but unmeasurable state variables of the machine. The circle-criterion approach is performed to compute the observer gain matrices as a solution of LMI (linear matrix inequalities) that ensure the stability conditions, in the sense of Lyapunov, of the estimated state error dynamics of the designed observer. Simulation results are presented to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China (No. 60832008)the Research Grants Council Joint Research Scheme National Natural Science Foundation of China (No. 60731160013)
文摘We propose a medium access control(MAC) protocol for uplink transmissions in wireless local area networks(WLANs),where both stations and access points(APs) are equipped with multiple antennas. The protocol solves some common problems in utilizing multiple input multiple output(MIMO) under the 802.11 protocol,e.g.,how to deploy preamble(training sequence) used for channel estimation and how to enable simultaneous data transmissions,and facilitates two simultaneous uplink data transmissions via a cross-layer approach. Furthermore,we develop a 3D discrete-time Markov model to analyze the per-formance of the proposed WLAN scheme. The analytical results are verified by simulation,and numerical results show that the system throughput can be significantly improved by our proposed scheme as compared with conventional schemes.