期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CRBMs-RVR的涡轴发动机输出功率衰退预测 被引量:1
1
作者 童志伟 鲁峰 黄金泉 《航空发动机》 北大核心 2022年第3期76-82,共7页
针对涡轴发动机全寿命期内输出功率衰退预测问题,提出一种含多层连续受限玻尔兹曼机(CRBMs)深度特征提取的相关向量回归(RVR)功率预测方法。对发动机气路部件测量数据进行重构,利用CRBMs深度网络提取数据深层特征,将特征数据作为RVR模... 针对涡轴发动机全寿命期内输出功率衰退预测问题,提出一种含多层连续受限玻尔兹曼机(CRBMs)深度特征提取的相关向量回归(RVR)功率预测方法。对发动机气路部件测量数据进行重构,利用CRBMs深度网络提取数据深层特征,将特征数据作为RVR模型的输入,实现对输出功率的预测,并对预测结果提供概率分布。以某型双转子涡轴发动机部件级模型为试验对象,模拟全寿命期内发动机气路部件性能退化,对输出功率进行衰退预测。试验结果表明:基于CRBMs-RVR的预测模型与传统的RVR预测模型相比,训练时间缩短30.2%,预测结果的均方根误差减小64.6%;与基于主成分分析(PCA)进行特征提取的PCA-RVR预测模型相比,预测结果均方根误差减小42.4%,验证了所提出的预测方法具有模型结构简单、预测精度高、可提供概率式输出的优点。 展开更多
关键词 输出功率衰退 预测模型 连续受限玻尔兹曼机 特征提取 相关向量回归 涡轴发动机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部