To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output err...To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters.展开更多
Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis ...Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis wind turbine(SB-VAWT) with or without pitch control was conducted from the aspects of aerodynamic force,flow structure and power coefficient.The computational fluid dynamics(CFD) prediction results show a significant increase in power coefficient for SB-VAWT with pitch control.According to the aerodynamic forces and total torque coefficient obtained at various tip speed ratios(TSRs),the results indicate that the blade pitch method can increase the power output and decrease the deformation of blade;especially,the total torque coefficient of blade pitch control at TSR 1.5 is about 2.5 times larger than that of fixed pitch case.Furthermore,experiment was carried out to verify the feasibility of pitch control methods.The results show that the present collective pitch control and individual pitch control methods can improve the self-starting capacity of SB-VAWT,and the former is much better and its proper operating TSRs ranges from 0.4 to 0.6.展开更多
While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drasti...While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)展开更多
The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of flo...The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of floods represents influencing and controlling a dynamic process of the system where the main regulation elements are water reservoirs. Control of water outflow from reservoirs is implicitly based on the used model (titled BW) based on FR (fuzzy regulation). Specification of a control algorithm means dealing with the issue of preparing a knowledge base for the process of tuning fuzzy regulators based on an I/O (input/output) matrix obtained by optimization of the target behaviour of WS. Partial results can be compared with the regulation outputs when specialized tuning was used for the fuzzy regulator of the control algorithm. Basic approaches follow from the narrow relation on BW model use to simulate floods, without any connection to real water management system. A generally introduced model allows description of an outflow dynamic system with stochastic inputs using submodels of robust regression in the outflow module. The submodels are constructed on data of historical FS (flood situations).展开更多
The design of H∞ reduced order controllers is known to be a non-convex optimization problem for which no generic solution exists. In this paper, the use of Particle Swarm Optimization (PSO) for the computation of H...The design of H∞ reduced order controllers is known to be a non-convex optimization problem for which no generic solution exists. In this paper, the use of Particle Swarm Optimization (PSO) for the computation of H~ static output feedbacks is investigated. Two approaches are tested. In a first part, a probabilistic-type PSO algorithm is defined for the computation of discrete sets of stabilizing static output feedback controllers. This method relies on a technique for random sample generation in a given domain. It is therefore used for computing a suboptimal Ha static output feedback solution, In a second part, the initial optimization problem is solved by PSO, the decision variables being the feedback gains. Results are compared with standard reduced order problem solvers using the COMPIeib (Constraint Matrix-optimization Problem Library) benchmark examples and appear to be much than satisfactory, proving the great potential of PSO techniques.展开更多
This paper focuses graph theory method for the problem of decomposition w.r.t. outputs for Boolean control networks(BCNs). First, by resorting to the semi-tensor product of matrices and the matrix expression of BCNs, ...This paper focuses graph theory method for the problem of decomposition w.r.t. outputs for Boolean control networks(BCNs). First, by resorting to the semi-tensor product of matrices and the matrix expression of BCNs, the definition of decomposition w.r.t. outputs is introduced. Second, by referring to the graphical structure of BCNs, a necessary and sufficient condition for the decomposition w.r.t. outputs is obtained based on graph theory method. Third, an effective algorithm to realize the maximum decomposition w.r.t. outputs is proposed. Finally, some examples are addressed to validate the theoretical results.展开更多
文摘To control the robot and track the designed trajectory with uncertain disturbances in a specified precision range, an adaptive fuzzy control scheme for the robot arm manipulator is discussed. The controller output error method (COEM) is used to design the adaptive fuzzy controller. A few or all of the parameters of the controller are adjusted by using the gradient descent algorithm to minimize the output error. COEM is adopted in the adaptive control system for the robot arm manipulator with 5-DOF. Simulation results show the effectiveness of the method and the real time adjustment of the parameters.
基金Project (E201216) supported by Heilongjiang Provincial Natural Science Foundation,China
文摘Collective pitch control and individual pitch control algorithms were present for straight-bladed vertical axis wind turbine to improve the self-starting capacity.Comparative analysis of straight-bladed vertical axis wind turbine(SB-VAWT) with or without pitch control was conducted from the aspects of aerodynamic force,flow structure and power coefficient.The computational fluid dynamics(CFD) prediction results show a significant increase in power coefficient for SB-VAWT with pitch control.According to the aerodynamic forces and total torque coefficient obtained at various tip speed ratios(TSRs),the results indicate that the blade pitch method can increase the power output and decrease the deformation of blade;especially,the total torque coefficient of blade pitch control at TSR 1.5 is about 2.5 times larger than that of fixed pitch case.Furthermore,experiment was carried out to verify the feasibility of pitch control methods.The results show that the present collective pitch control and individual pitch control methods can improve the self-starting capacity of SB-VAWT,and the former is much better and its proper operating TSRs ranges from 0.4 to 0.6.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 863 project No.2014AA01A701+4 种基金Program for New Century Excellent Talents in University(NECT12-0774)the open research fund of National Mobile Communications Research Laboratory Southeast University(No.2013D12)Fundamental Research Funds for the Central Universities(FRF-BD-15-012A)the Research Foundation of China Mobilethe Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)
文摘The paper follows possible specification of a control algorithm of a WS (water management system) during floods using the procedures of AI (artificial intelligence). The issue of minimizing negative impacts of floods represents influencing and controlling a dynamic process of the system where the main regulation elements are water reservoirs. Control of water outflow from reservoirs is implicitly based on the used model (titled BW) based on FR (fuzzy regulation). Specification of a control algorithm means dealing with the issue of preparing a knowledge base for the process of tuning fuzzy regulators based on an I/O (input/output) matrix obtained by optimization of the target behaviour of WS. Partial results can be compared with the regulation outputs when specialized tuning was used for the fuzzy regulator of the control algorithm. Basic approaches follow from the narrow relation on BW model use to simulate floods, without any connection to real water management system. A generally introduced model allows description of an outflow dynamic system with stochastic inputs using submodels of robust regression in the outflow module. The submodels are constructed on data of historical FS (flood situations).
文摘The design of H∞ reduced order controllers is known to be a non-convex optimization problem for which no generic solution exists. In this paper, the use of Particle Swarm Optimization (PSO) for the computation of H~ static output feedbacks is investigated. Two approaches are tested. In a first part, a probabilistic-type PSO algorithm is defined for the computation of discrete sets of stabilizing static output feedback controllers. This method relies on a technique for random sample generation in a given domain. It is therefore used for computing a suboptimal Ha static output feedback solution, In a second part, the initial optimization problem is solved by PSO, the decision variables being the feedback gains. Results are compared with standard reduced order problem solvers using the COMPIeib (Constraint Matrix-optimization Problem Library) benchmark examples and appear to be much than satisfactory, proving the great potential of PSO techniques.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61673012,11271194a Project on the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘This paper focuses graph theory method for the problem of decomposition w.r.t. outputs for Boolean control networks(BCNs). First, by resorting to the semi-tensor product of matrices and the matrix expression of BCNs, the definition of decomposition w.r.t. outputs is introduced. Second, by referring to the graphical structure of BCNs, a necessary and sufficient condition for the decomposition w.r.t. outputs is obtained based on graph theory method. Third, an effective algorithm to realize the maximum decomposition w.r.t. outputs is proposed. Finally, some examples are addressed to validate the theoretical results.