The electron transport of linear atomic chain trodes was investigated by using the density Green's function method. We have calculated of MgB2 sandwiched between Au(100) elecfunctional theory with the non-equilibri...The electron transport of linear atomic chain trodes was investigated by using the density Green's function method. We have calculated of MgB2 sandwiched between Au(100) elecfunctional theory with the non-equilibrium the corresponding cohesion energy and conductance of junctions in different distance. It is found that, at the equilibrium position, the Au-B bond-length is 1.90 A, the B-Mg bond-length is 2.22 A, and the equilibrium conductance is 0.51G0 (Go=2e^2/h). The transport channel is almost formed by the π antibonding orbitals, which was made up of the Px and Py orbital electrons of B and Mg atoms. In the voltage range of -1.5 to 1.5 V, the junctions show the metallic behaviors. When the voltage is larger than 1.5 V, the current decreases gradually and then negative differential resistance appears almost symmetrically on both positive and negative bias.展开更多
The change of light output power of LEDs based on A1GalnP heterostructures with multiple quantum wells (590 nm and 630 nm) under irradiation by fast neutrons depends on the operating current density. It can be disti...The change of light output power of LEDs based on A1GalnP heterostructures with multiple quantum wells (590 nm and 630 nm) under irradiation by fast neutrons depends on the operating current density. It can be distinguished the regions of high, average and low electron injection. Operating current, this corresponds to the position of the boundary between the selected levels of the electron injection, increases with increasing neutron fluence. The final stage of the reducing process of the light output power under irradiation is the regime of low electron injection. The relative change in light output power depends on the operating current (operating current density) and can be described by a fairly simple equation. Established relations predict radiation resistance of LEDs, and it makes the most rational justification of operating modes of light-emitting diodes in terms of radiation resistance.展开更多
An online TL (transmission line) impedance TPIS (transmission line parameter identification system) using PMU (phasor measurement unit) was recently developed and implemented at CSG (china southern power grid c...An online TL (transmission line) impedance TPIS (transmission line parameter identification system) using PMU (phasor measurement unit) was recently developed and implemented at CSG (china southern power grid company), Traditional approaches for TL impedance calculation only approximate the effect of conductor sags and ignore the dependence of impedances on temperature variation. Utilizing PMU measurements may improve the accuracy of TL parameters calculation. The challenge is that the parameters identified are very sensitive to noise and errors in PMU measurements, which are difficult to quantify and can be uncertain under different system operating/loading condition, TPIS provides an innovative yet practical problem formulation for TL sequence parameter estimation based on least-squares with linear constraints. A bootstrapping-based resampling technique is developed and a new metric is proposed to determine the credibility of the estimated sequence impedances. This paper discusses the proposed methodologies, challenges, as well as implementation issues identified during the development of TPIS.展开更多
We investigate the charge transport in close-packed ultra-narrow (1.5 nm diameter) gold nanowires stabilized by oleylamine ligands. We give evidence of charging effects in the weakly coupled one-dimensional (1D) n...We investigate the charge transport in close-packed ultra-narrow (1.5 nm diameter) gold nanowires stabilized by oleylamine ligands. We give evidence of charging effects in the weakly coupled one-dimensional (1D) nanowires, monitored by the temperature and the bias voltage. At low temperature, in the Coulomb blockade regime, the current flow reveals an original cooperative multi-hopping process between 1D-segments of Au-NWs, minimising the charging energy cost. Above the Coulomb blockade threshold voltage and at high temperature, the charge transport evolves into a sequential tunneling regime between the nearest- nanowires. Our analysis shows that the effective length of the Au-NWs inside the bundle is similar to the 1D localisation length of the electronic wave function (of the order of 120 nm _+ 20 nm), but almost two orders of magnitude larger than the diameter of the nanowire. This result confirms the high structural quality of the Au-NW segments.展开更多
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.11174214 and No.11204192), the Research Project of Education Department in Sichuan Province (No.13ZB0207), and Scientific Research Project of Yibin University (No.2013YY05).
文摘The electron transport of linear atomic chain trodes was investigated by using the density Green's function method. We have calculated of MgB2 sandwiched between Au(100) elecfunctional theory with the non-equilibrium the corresponding cohesion energy and conductance of junctions in different distance. It is found that, at the equilibrium position, the Au-B bond-length is 1.90 A, the B-Mg bond-length is 2.22 A, and the equilibrium conductance is 0.51G0 (Go=2e^2/h). The transport channel is almost formed by the π antibonding orbitals, which was made up of the Px and Py orbital electrons of B and Mg atoms. In the voltage range of -1.5 to 1.5 V, the junctions show the metallic behaviors. When the voltage is larger than 1.5 V, the current decreases gradually and then negative differential resistance appears almost symmetrically on both positive and negative bias.
文摘The change of light output power of LEDs based on A1GalnP heterostructures with multiple quantum wells (590 nm and 630 nm) under irradiation by fast neutrons depends on the operating current density. It can be distinguished the regions of high, average and low electron injection. Operating current, this corresponds to the position of the boundary between the selected levels of the electron injection, increases with increasing neutron fluence. The final stage of the reducing process of the light output power under irradiation is the regime of low electron injection. The relative change in light output power depends on the operating current (operating current density) and can be described by a fairly simple equation. Established relations predict radiation resistance of LEDs, and it makes the most rational justification of operating modes of light-emitting diodes in terms of radiation resistance.
文摘An online TL (transmission line) impedance TPIS (transmission line parameter identification system) using PMU (phasor measurement unit) was recently developed and implemented at CSG (china southern power grid company), Traditional approaches for TL impedance calculation only approximate the effect of conductor sags and ignore the dependence of impedances on temperature variation. Utilizing PMU measurements may improve the accuracy of TL parameters calculation. The challenge is that the parameters identified are very sensitive to noise and errors in PMU measurements, which are difficult to quantify and can be uncertain under different system operating/loading condition, TPIS provides an innovative yet practical problem formulation for TL sequence parameter estimation based on least-squares with linear constraints. A bootstrapping-based resampling technique is developed and a new metric is proposed to determine the credibility of the estimated sequence impedances. This paper discusses the proposed methodologies, challenges, as well as implementation issues identified during the development of TPIS.
文摘We investigate the charge transport in close-packed ultra-narrow (1.5 nm diameter) gold nanowires stabilized by oleylamine ligands. We give evidence of charging effects in the weakly coupled one-dimensional (1D) nanowires, monitored by the temperature and the bias voltage. At low temperature, in the Coulomb blockade regime, the current flow reveals an original cooperative multi-hopping process between 1D-segments of Au-NWs, minimising the charging energy cost. Above the Coulomb blockade threshold voltage and at high temperature, the charge transport evolves into a sequential tunneling regime between the nearest- nanowires. Our analysis shows that the effective length of the Au-NWs inside the bundle is similar to the 1D localisation length of the electronic wave function (of the order of 120 nm _+ 20 nm), but almost two orders of magnitude larger than the diameter of the nanowire. This result confirms the high structural quality of the Au-NW segments.