Based on the transmission theory, the mechanism of the generation of the motor terminal over voltage caused by the long line transmission of PWM pulses in the PWM variable frequency driving system is studied. This p...Based on the transmission theory, the mechanism of the generation of the motor terminal over voltage caused by the long line transmission of PWM pulses in the PWM variable frequency driving system is studied. This paper focuses on the effects of the variant length and characteristic impedance of cables on the over voltage by large numbers of experiment results. In terms of the impedance matching method, a network fixed at motor terminal is designed to reduce the over voltage. The utility of this network is testified by the experiments.展开更多
A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically...A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically. By adjusting the parameters of the capacitors and the inductors, the power divider shows perfectly symmetric power division at 5.13 GHz, return loss up to ?24 dB, with the transmitted power being close to ?3.1 dB. The phenomena are demonstrated by simulation results. Being compact in size and low-cost, the proposed power divider is very suitable for microwave and millimeter wave integrated circuits.展开更多
In this paper, the authors present the transmission line (TL) realization of one-dimensional subwavelength resonator formed by a pair of conventional right-handed material (RHM) and left-handed material (LHM). In such...In this paper, the authors present the transmission line (TL) realization of one-dimensional subwavelength resonator formed by a pair of conventional right-handed material (RHM) and left-handed material (LHM). In such resonator, a novel reso- nant mode with the resonant frequency depending on the length ratio of the RH/LH TL sections occurs as a consequence of the full phase compensation due to the backward wave in the LH TL section. The theoretical circuit-model analyses are supported by simulation and experimental evidence on resonators with different RH/LH length ratios.展开更多
The first completely localized DC back-to-back project for asynchronous interconnection between Northwest and Central China plays an important role in realizing national power grid interconnection, spurring indigenous...The first completely localized DC back-to-back project for asynchronous interconnection between Northwest and Central China plays an important role in realizing national power grid interconnection, spurring indigenous manufacturing industries and promoting DC transmission equipment. Insisting on the principle of autonomous innovation, this project was based on domestic forces in every aspect, from engineering organization, system design, equipment completion, engineering design, equipment manufacturing and procurement to construction and debugging. By passing through strict quality control, intermediate supervision and acceptance test and assessment, the project has been proved up to world advanced level.展开更多
The overvoltage phenomena of ultra high voltage (UHV) transmission lines are analyzed and verified by EMTDC/PSCAD simulation. Referring to the theoretical analyses and operating experiences of extra high voltage (EHV)...The overvoltage phenomena of ultra high voltage (UHV) transmission lines are analyzed and verified by EMTDC/PSCAD simulation. Referring to the theoretical analyses and operating experiences of extra high voltage (EHV) transmission lines in China and UHV transmission lines in Russia and Japan, the methods to suppress the internal overvoltage in UHV transmission lines by protection and control strategies are discussed. Through the cooperation among the recloser, shunt reactor, tripping and closing resistance, and metal oxide varistor(MOV), the overvoltage can be restrained within an acceptable level.展开更多
The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, re...The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.展开更多
As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power trans...As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power transmission capacity. In this paper, an enhancement technique of real power transfer capacity of transmission lines is presented. A SVC (static var compensator) is designed and applied to a simple power system for this purpose. Increase in power flow and improvement in bus voltage profile are observed after using the SVC. Stability analysis of the system after experiencing fault as well as consequent fault clearance by time domain analysis has also beeu performed and satisfactory results are obtained.展开更多
The wireless electric vehicle(EV) charging system is highly safe and flexible. To reduce the weight and cost of EVs, the wireless charging system, which simplifies the structure inside an EV and utilizes the transmitt...The wireless electric vehicle(EV) charging system is highly safe and flexible. To reduce the weight and cost of EVs, the wireless charging system, which simplifies the structure inside an EV and utilizes the transmitter-side control method, has become popular. This study investigates the transmitter-side control methods in a wireless EV charging system. First, a universal wireless charging system is introduced, and the function of its transfer power is derived. It is observed that the transfer power can be controlled by regulating either the phase-shift angle or the DC-link voltage. Further, the influence of the control variables is studied using numerical analysis. Additionally, the corresponding control methods, namely the phase-shift angle and the DC-link voltage control, are compared by calculation and simulation. It is found that:(1) the system efficiency is low with the phase-shift control method because of the converter switching loss;(2) the dynamic response is slow with the DC-link voltage control method because of the large inertia of the inductor and capacitor;(3) both the control methods have limitations in their adjustable power range. Therefore, a combined control method is proposed, with the advantages of high system efficiency, fast dynamic response, and wide adjustable power range. Finally, experiments are performed to verify the validity of the theoretical analysis and the effectiveness of the proposed method. This study provides a detailed and comprehensive analysis of the transmitter-side control methods in the wireless charging system, considering the sensitivity of parameters, converter losses, system efficiency,and dynamic performance, with the dead-time effect taken into consideration. Moreover, the proposed control method can be used to realize the optimal combination of the phase-shift angle and the DC-link voltage with good dynamic performance, and it is useful for the optimal operation of the wireless charging system.展开更多
This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integr...This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integrated impedance (FCII) calculated for a transmission line with TCSC and controllable shunt reactor (CSR). The FCII is defined as the ratio of the sum of the fault component voltage phasors of a transmission line with TCSC and CSR to the sum of the fault component current phasors where all the phasors are determined at both line's terminals. It can be used to distinguish internal faults occurring on the line from external ones. If the fault is an external one the FCII reflects the line's capacitive impedance and has large value. If the fault is an internal one on the line the FCII reflects the impedance of the equivalent system and the line and is relatively small. The new pilot protection scheme can be easily set and has the fault phase selection ability and also it is not affected by the capacitive current and the fault transition resistance. It is not sensitive to compensation level and dynamics of TCSC and CSR. The effectiveness of the new scheme is validated against data obtained in ATP simulations and Northwest China 750 kV Project.展开更多
Designing artificial structures with heterogeneous elements and manipulating their interface coupling ways usually bring in synthetic neo-nature to functional devices.For piezoceramic devices,the deformation response ...Designing artificial structures with heterogeneous elements and manipulating their interface coupling ways usually bring in synthetic neo-nature to functional devices.For piezoceramic devices,the deformation response refers to a variety of extensional,contractional,or shear modes of crystals,and also relies on boundary conditions from morphology design.However,to pursue fundamental torsion actuation in an integrated piezoceramic component is still a long-term tough task due to nil twist mode limited by microscopic crystal mirror symmetry.Herein,we demonstrate a design of cofired monolithic actuators to originally overcome this obstacle.The prototype device is composed of two sets of stacked actuation subunits that work on artificially reverse face shear modes,and their chiral stiffness couplings will synergistically contribute to synthetic twist outputs at a broad bandwidth.Finite element simulation reveals twist displacements are highly tunable by manipulating the geometrical dimensions.Transverse deflection measurements manifest the stable and sizeable linear actuation response to applied electric fields(around 3.7μm under 40 V at 1 Hz).Importantly,the design actually introduces a more general route to enable arbitrary modes and actuation states in integrated piezoceramic components.展开更多
文摘Based on the transmission theory, the mechanism of the generation of the motor terminal over voltage caused by the long line transmission of PWM pulses in the PWM variable frequency driving system is studied. This paper focuses on the effects of the variant length and characteristic impedance of cables on the over voltage by large numbers of experiment results. In terms of the impedance matching method, a network fixed at motor terminal is designed to reduce the over voltage. The utility of this network is testified by the experiments.
基金Project supported by the National Natural Science Foundation of China (Nos. 60577023 and 60378037), the National Basic Research Program (973) of China (No. 2004CB719802), China Postdoctoral Science Foundation, and Education Ministry Key Laboratory of Photoelectric Information Technology Science Foundation (No. 2005-20), China
文摘A new power divider, composed of a novel composite right/left-handed (CRLH) transmission line (TL) unit, is proposed. The properties of the power divider based on four CRLH TL unit cells are investigated theoretically. By adjusting the parameters of the capacitors and the inductors, the power divider shows perfectly symmetric power division at 5.13 GHz, return loss up to ?24 dB, with the transmitted power being close to ?3.1 dB. The phenomena are demonstrated by simulation results. Being compact in size and low-cost, the proposed power divider is very suitable for microwave and millimeter wave integrated circuits.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB719800) and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20030284024)
文摘In this paper, the authors present the transmission line (TL) realization of one-dimensional subwavelength resonator formed by a pair of conventional right-handed material (RHM) and left-handed material (LHM). In such resonator, a novel reso- nant mode with the resonant frequency depending on the length ratio of the RH/LH TL sections occurs as a consequence of the full phase compensation due to the backward wave in the LH TL section. The theoretical circuit-model analyses are supported by simulation and experimental evidence on resonators with different RH/LH length ratios.
文摘The first completely localized DC back-to-back project for asynchronous interconnection between Northwest and Central China plays an important role in realizing national power grid interconnection, spurring indigenous manufacturing industries and promoting DC transmission equipment. Insisting on the principle of autonomous innovation, this project was based on domestic forces in every aspect, from engineering organization, system design, equipment completion, engineering design, equipment manufacturing and procurement to construction and debugging. By passing through strict quality control, intermediate supervision and acceptance test and assessment, the project has been proved up to world advanced level.
基金ABB (China) Research Ltd. and National Natural Science Foundation of China(No.50477037)
文摘The overvoltage phenomena of ultra high voltage (UHV) transmission lines are analyzed and verified by EMTDC/PSCAD simulation. Referring to the theoretical analyses and operating experiences of extra high voltage (EHV) transmission lines in China and UHV transmission lines in Russia and Japan, the methods to suppress the internal overvoltage in UHV transmission lines by protection and control strategies are discussed. Through the cooperation among the recloser, shunt reactor, tripping and closing resistance, and metal oxide varistor(MOV), the overvoltage can be restrained within an acceptable level.
基金Project(61104088)supported by the National Natural Science Foundation of ChinaProject(12C0741)supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘The equivalent two-port network model of a middle range wireless power transfer(WPT) system was presented based on strongly coupled multiple resonators. The key parameters of the WPT system include self-inductance, resistance, parasitic capacitance, mutual inductance and S-parameters of coils & resonators were analyzed. The impedance matching method was used to optimize load power and transmission efficiency of the multi-resonator WPT system, and the impedance matching method was realized through adjusting the distances between the coils and resonators. Experiments show that the impedance matching method can effectively improve load power and transmission efficiency for middle range wireless power transfer systems with multiple resonators, at distances up to 3 times the coil radius with efficiency more than 70% and load power also close to 3.5 W.
文摘As power system interconnections become more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power compensation and enhancement of real power transmission capacity. In this paper, an enhancement technique of real power transfer capacity of transmission lines is presented. A SVC (static var compensator) is designed and applied to a simple power system for this purpose. Increase in power flow and improvement in bus voltage profile are observed after using the SVC. Stability analysis of the system after experiencing fault as well as consequent fault clearance by time domain analysis has also beeu performed and satisfactory results are obtained.
基金supported by the International Science and Technology Cooperation Program of China(Grant No.2016YFE0102200)
文摘The wireless electric vehicle(EV) charging system is highly safe and flexible. To reduce the weight and cost of EVs, the wireless charging system, which simplifies the structure inside an EV and utilizes the transmitter-side control method, has become popular. This study investigates the transmitter-side control methods in a wireless EV charging system. First, a universal wireless charging system is introduced, and the function of its transfer power is derived. It is observed that the transfer power can be controlled by regulating either the phase-shift angle or the DC-link voltage. Further, the influence of the control variables is studied using numerical analysis. Additionally, the corresponding control methods, namely the phase-shift angle and the DC-link voltage control, are compared by calculation and simulation. It is found that:(1) the system efficiency is low with the phase-shift control method because of the converter switching loss;(2) the dynamic response is slow with the DC-link voltage control method because of the large inertia of the inductor and capacitor;(3) both the control methods have limitations in their adjustable power range. Therefore, a combined control method is proposed, with the advantages of high system efficiency, fast dynamic response, and wide adjustable power range. Finally, experiments are performed to verify the validity of the theoretical analysis and the effectiveness of the proposed method. This study provides a detailed and comprehensive analysis of the transmitter-side control methods in the wireless charging system, considering the sensitivity of parameters, converter losses, system efficiency,and dynamic performance, with the dead-time effect taken into consideration. Moreover, the proposed control method can be used to realize the optimal combination of the phase-shift angle and the DC-link voltage with good dynamic performance, and it is useful for the optimal operation of the wireless charging system.
基金supported by the National Natural Science Foundation of China (Grant Nos.50877061 and 51037005)
文摘This paper analyzes the fundamental frequency impedance presents a novel transmission line pilot protection scheme characteristic of a thyristor controlled series capacitor (TCSC) and based on fault component integrated impedance (FCII) calculated for a transmission line with TCSC and controllable shunt reactor (CSR). The FCII is defined as the ratio of the sum of the fault component voltage phasors of a transmission line with TCSC and CSR to the sum of the fault component current phasors where all the phasors are determined at both line's terminals. It can be used to distinguish internal faults occurring on the line from external ones. If the fault is an external one the FCII reflects the line's capacitive impedance and has large value. If the fault is an internal one on the line the FCII reflects the impedance of the equivalent system and the line and is relatively small. The new pilot protection scheme can be easily set and has the fault phase selection ability and also it is not affected by the capacitive current and the fault transition resistance. It is not sensitive to compensation level and dynamics of TCSC and CSR. The effectiveness of the new scheme is validated against data obtained in ATP simulations and Northwest China 750 kV Project.
基金the National Natural Science Foundation of China(51772005,51132001,and 52032012)Beijing Key Laboratory for Magnetoelectric Materials and Devices。
文摘Designing artificial structures with heterogeneous elements and manipulating their interface coupling ways usually bring in synthetic neo-nature to functional devices.For piezoceramic devices,the deformation response refers to a variety of extensional,contractional,or shear modes of crystals,and also relies on boundary conditions from morphology design.However,to pursue fundamental torsion actuation in an integrated piezoceramic component is still a long-term tough task due to nil twist mode limited by microscopic crystal mirror symmetry.Herein,we demonstrate a design of cofired monolithic actuators to originally overcome this obstacle.The prototype device is composed of two sets of stacked actuation subunits that work on artificially reverse face shear modes,and their chiral stiffness couplings will synergistically contribute to synthetic twist outputs at a broad bandwidth.Finite element simulation reveals twist displacements are highly tunable by manipulating the geometrical dimensions.Transverse deflection measurements manifest the stable and sizeable linear actuation response to applied electric fields(around 3.7μm under 40 V at 1 Hz).Importantly,the design actually introduces a more general route to enable arbitrary modes and actuation states in integrated piezoceramic components.