The distinction between two microwave equivalent-circuit models,quasi Esaki tunneling model (QETM) and quantum well injection transit model (QWITM),for the resonant tunneling diode (RTD) is discussed in details,and tw...The distinction between two microwave equivalent-circuit models,quasi Esaki tunneling model (QETM) and quantum well injection transit model (QWITM),for the resonant tunneling diode (RTD) is discussed in details,and two groups of circuit parameters are extracted from experiment data by the least square fit method.Both theory analysis and the comparison of fit results demonstrate that QWITM is much more precise than QETM.In addition,the rationality of QWITM circuit's parameters confirms it too.On this basis,the resistive frequency is calculated,whose influence factors and improvement method are simply discussed as well.展开更多
In this paper we describe a full-integrated circuit containing all building blocks of a completed PLL-based synthesizer except for low pass filter(LPF). The frequency synthesizer is designed for a frequency hopping ...In this paper we describe a full-integrated circuit containing all building blocks of a completed PLL-based synthesizer except for low pass filter(LPF). The frequency synthesizer is designed for a frequency hopping (FH) transceiver operating up to 1.5 GHz as a local oscillator. The architecture of Voltage Controlled Oscillator (VCO) is optimized to get better performance, and a phase noise of -111.85-dBc/Hz @ 1 MHz and a tuning range of 250 MHz are gained at a centre frequency of 1.35 GHz. A novel Dual-Modulus Prescaler(DMP) is designed to achieve a very low jitter and a lower power. The settling time of PLL is 80 μs while the reference frequency is 400 KHz.This monolithic frequency synthesizer is to integrate all main building blocks of PLL except for the low pass filter, with a maximum VCO output frequency of 1.5 GHz, and is fabricated with a 0.18 μm mixed signal CMOS process. Low power dissipation, low phase noise, large tuning range and fast settling time are gained in this design.展开更多
A conveyor belt driven by wound rotor motors produces dynamic tension, velocity and accelerationduring starting. The terrible situation (such as resonance) in dynamic analysis and design is that system naturalfrequenc...A conveyor belt driven by wound rotor motors produces dynamic tension, velocity and accelerationduring starting. The terrible situation (such as resonance) in dynamic analysis and design is that system naturalfrequencies are equal to those for switching off electric resistances. This paper analyzes and determines systemnatural frequencies based on a modeling method of receptances with the analysis of sub-systems model and of theprinciple of their addition and conveyor loop closure. It also puts forward to calculate the time interval for switching off electric resistances. The starting of one conveyor is simulated by lumped-mass-spring-model software tofurther illustrate the influence of time interval for switching off electric resistances on conveyor dynamic behavior. Two methods are also compared. The receptance model is proved to be an excellent alternative.展开更多
In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor an...In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor and inductor in parallel for reduction of numerical oscillations. It is simulated the numerical routine with and without the effectof frequency in the longitudinal parameters. Initially, it is used to state variables and 7t circuits representing the transmission line composing a linear system which is solved by numerical routines based on the trapezoidal rule. The effect of frequency on the line is synthesized by resistors and inductors in parallel and this representation is analyzed in details. It is described as transmission lines and the frequency influence in these lines through the state variables.展开更多
A novel n-buried-pSOI sandwiched structure for an RF power LDMOS is proposed. The output characteristics of the RF power LDMOS are greatly affected by the drain-substrate parasitic capacitance. The output characterist...A novel n-buried-pSOI sandwiched structure for an RF power LDMOS is proposed. The output characteristics of the RF power LDMOS are greatly affected by the drain-substrate parasitic capacitance. The output characteristics become better as the drain-substrate parasitic capacitance decreases. Results show that the drain-substrate capacitance of the n- buried-pSOI sandwiched LDMOS is 46.6% less than that of the normal LDMOS,and 11.5% less than that of the n-buried- pSOI LDMOS,respectively. At l dB compression point,its output power is 188% higher than that of the normal LDMOS, and 10.6% higher than that of the n-buried-pSOI LDMOS, respectively. The power-added efficiency of the proposed structure is 38.3%. The breakdown voltage of the proposed structure is 11% more than that of the normal LDMOS.展开更多
文摘The distinction between two microwave equivalent-circuit models,quasi Esaki tunneling model (QETM) and quantum well injection transit model (QWITM),for the resonant tunneling diode (RTD) is discussed in details,and two groups of circuit parameters are extracted from experiment data by the least square fit method.Both theory analysis and the comparison of fit results demonstrate that QWITM is much more precise than QETM.In addition,the rationality of QWITM circuit's parameters confirms it too.On this basis,the resistive frequency is calculated,whose influence factors and improvement method are simply discussed as well.
文摘In this paper we describe a full-integrated circuit containing all building blocks of a completed PLL-based synthesizer except for low pass filter(LPF). The frequency synthesizer is designed for a frequency hopping (FH) transceiver operating up to 1.5 GHz as a local oscillator. The architecture of Voltage Controlled Oscillator (VCO) is optimized to get better performance, and a phase noise of -111.85-dBc/Hz @ 1 MHz and a tuning range of 250 MHz are gained at a centre frequency of 1.35 GHz. A novel Dual-Modulus Prescaler(DMP) is designed to achieve a very low jitter and a lower power. The settling time of PLL is 80 μs while the reference frequency is 400 KHz.This monolithic frequency synthesizer is to integrate all main building blocks of PLL except for the low pass filter, with a maximum VCO output frequency of 1.5 GHz, and is fabricated with a 0.18 μm mixed signal CMOS process. Low power dissipation, low phase noise, large tuning range and fast settling time are gained in this design.
文摘A conveyor belt driven by wound rotor motors produces dynamic tension, velocity and accelerationduring starting. The terrible situation (such as resonance) in dynamic analysis and design is that system naturalfrequencies are equal to those for switching off electric resistances. This paper analyzes and determines systemnatural frequencies based on a modeling method of receptances with the analysis of sub-systems model and of theprinciple of their addition and conveyor loop closure. It also puts forward to calculate the time interval for switching off electric resistances. The starting of one conveyor is simulated by lumped-mass-spring-model software tofurther illustrate the influence of time interval for switching off electric resistances on conveyor dynamic behavior. Two methods are also compared. The receptance model is proved to be an excellent alternative.
文摘In this article, a transmission line is represented by a cascade of n circuits using a single phase. It is analyzed what is the reasonable number of n circuits and the number of blocks composed by parallel resistor and inductor in parallel for reduction of numerical oscillations. It is simulated the numerical routine with and without the effectof frequency in the longitudinal parameters. Initially, it is used to state variables and 7t circuits representing the transmission line composing a linear system which is solved by numerical routines based on the trapezoidal rule. The effect of frequency on the line is synthesized by resistors and inductors in parallel and this representation is analyzed in details. It is described as transmission lines and the frequency influence in these lines through the state variables.
文摘A novel n-buried-pSOI sandwiched structure for an RF power LDMOS is proposed. The output characteristics of the RF power LDMOS are greatly affected by the drain-substrate parasitic capacitance. The output characteristics become better as the drain-substrate parasitic capacitance decreases. Results show that the drain-substrate capacitance of the n- buried-pSOI sandwiched LDMOS is 46.6% less than that of the normal LDMOS,and 11.5% less than that of the n-buried- pSOI LDMOS,respectively. At l dB compression point,its output power is 188% higher than that of the normal LDMOS, and 10.6% higher than that of the n-buried-pSOI LDMOS, respectively. The power-added efficiency of the proposed structure is 38.3%. The breakdown voltage of the proposed structure is 11% more than that of the normal LDMOS.