Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and a...Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and armoring.Firstly,the incipient velocity for nonuniform sediment particles was studied,and a formula was derived based on the angle of repose of nonuniform sediment.The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles.Also,comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions.Secondly,a birth-death,immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring.The comparison between experimental data and computed results shows that our model can predict the bed load transport rate,although there may be some limitations,the chief of which is that there are many variables in the model to be determined through experiment.This makes its application in river engineering inconvenient.展开更多
[Objective] The aim was to resolve the problem of low transportation efficiency of seedlings,vulnerability of seedling trays and difficulty of recycling.[Method]Naked seedlings were transported with trays and frames t...[Objective] The aim was to resolve the problem of low transportation efficiency of seedlings,vulnerability of seedling trays and difficulty of recycling.[Method]Naked seedlings were transported with trays and frames to improve transportation and transplanting efficiency.[Result] The transportation of naked seedlings would effectively reduce transportation cost and improve transportation and transplanting efficiency of tobacco seedlings.[Conclusion] The transportation of naked seedlings is suitable to be applied in the region with professional transplanting.展开更多
Mosul dam is the biggest hydraulic structure in Iraq located on the River Tigris 60 km northwest of Mosul city. Its storage capacity is 11. 11 × 109 m3 and it had been in operation since 1986. A physical distorte...Mosul dam is the biggest hydraulic structure in Iraq located on the River Tigris 60 km northwest of Mosul city. Its storage capacity is 11. 11 × 109 m3 and it had been in operation since 1986. A physical distorted model with movable bed having a vertical scale 1: 100 and a horizontal scale 1:1000 was used to conduct the experiments relating the water level at the reservoir and water discharge upstream the reservoir with the bed load transport rate. The model represents the first 15 km of most northern part of Mosul dam reservoir. The construction of the model was based on bathymetric survey conducted in 2009. Twenty-four experiments were executed using four different discharges (0.5, 1.0, 1.5, and 2.0 L/s) which represent the average discharges in the flood period of River Tigris. At each individual discharge six operations were assumed where the reservoir's water level was 305, 307, 309, 310, 312, 315 meters above sea level respectively. In all the experiments conducted, bedload transport was measured in the physical model at section representing the River Tigris 1 km upstream the reservoir. The results showed that the bedload rate was decreasing when the water level within the reservoir was increasing. It was also evident that bedload transport rate dramatically decreased at level 310 meters above sea level onward. This is due to the fact that at this level represent the effect of backwater which was noticeable on the river cross section展开更多
Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse app...Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse application scenarios expected for 5G networks.Hence,key performance indicators(KPIs) of 5G systems would be very diverse,not just the peak data rate and average/edge spectral efficiency requirements as in previous generations.For each typical scenario,multiple technologies may be used independently or jointly to improve the transmission efficiency,to lower the cost,and to increase the number of connections,etc.Key enabling technologies are discussed which include massive MIMO,ultradense deployment specific techniques,nonorthogonal transmission,high frequency communications,etc.展开更多
Experiments were conducted using cohesionless sand particles with median diameter of 0.48 mm to investigate the time variation of sediment transport rate under the influence of local downward seepage.The experimental ...Experiments were conducted using cohesionless sand particles with median diameter of 0.48 mm to investigate the time variation of sediment transport rate under the influence of local downward seepage.The experimental results show that the bedload transport rate in terms of volumetric sediment transport rate per unit width increased rapidly with time in the presence of suction,eventually reaching a peak beyond which it started to decrease.The trend of reduction was significantly reduced beyond 8 400 s after the test started.The analytical expression was derived in terms of dimensionless sediment transport rate and dimensionless time.The hypothesized relationships were compared with the experimental data,indicating a good agreement with each other.展开更多
Since most ad hoc mobile devices today operate on batteries,the power consumption becomes an important issue.This paper proposes a cross-layer design of energy-aware ad hoc on-demand distance vector(CEAODV) routing pr...Since most ad hoc mobile devices today operate on batteries,the power consumption becomes an important issue.This paper proposes a cross-layer design of energy-aware ad hoc on-demand distance vector(CEAODV) routing protocol which adopts cross-layer mechanism and energy-aware metric to improve AODV routing protocol to reduce the energy consumption and then prolong the life of the whole network.In CEAODV,the link layer and the routing layer work together to choose the optimized transmission power for nodes and the route for packets.The link layer provides the energy consumption information for the routing layer and the routing layer chooses route accordingly and conversely controls the link layer to adjust the transmission power.The simulation result shows that CEAODV can outperform AODV to save more energy.It can reduce the consumed energy by about 8%over traditional energy-aware algorithm.And the performance is better when the traffic load is higher in the network.展开更多
The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while...The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while the receive antennas are still centralized, and the general case where both the time delays and the frequency offsets are possibly different for each transmit antenna is considered. The channel is supposed to be frequency flat, and the macroscopic fading is also taken into consideration. A carrier frequency offset estimator based on Maximum Likelihood (ML) is proposed, which can separately estimate the frequency offset for each transmit antenna and exploit the spatial diversity. The Cramer-Rao Bound (CRB) for synchronous MIMO (i.e., the time delays for each transmit antenna are all equal) is also derived. Simulation results are given to illustrate the per- formance of the estimator and compare it with the CRB. It is shown that the estimator can provide satisfactory frequency offset estimates and its performance is close to the CRB for the Signal-to-Noise Ratio (SNR) below 20dB.展开更多
This paper studies the relationship between mobility, navigation and localization in the context of wireless sensor networks with mobile beacons. It is observed that mobility can aid in network node localization and t...This paper studies the relationship between mobility, navigation and localization in the context of wireless sensor networks with mobile beacons. It is observed that mobility can aid in network node localization and that once localized, the network nodes can localize and track a mobile object and guide its navigation. A distributed kernel-based algorithm is proposed that enables the nodes to establish confident position estimates in the presence of ranging inaccuracies. The proposed approach features robustness with respect to range measurement inaccuracies, low complexity and distributed implementation, using only local information. Simulation validates our approach viable.展开更多
In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between H...In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.展开更多
This paper aims to present the experimental result obtained from dynamic response on flee-flee beam in driving point and transfer mobility analysis using impact test method using hammer tips that are steel, plastic an...This paper aims to present the experimental result obtained from dynamic response on flee-flee beam in driving point and transfer mobility analysis using impact test method using hammer tips that are steel, plastic and rubber. The 8630C accelerometer and analyzer is used for data logging and for the analysis, the plastic hammer tip is chosen. The analytical and the experimental value then are compared for the free-free beam natural frequency, damping ratio, and stiffness value. As a result, the highest percentage error for natural frequency is approximated to 2.7%, the damping ratio is approximated to 3.115 × 10^-3 and the stiffness value gives the major different between the experiment value and theoretical value. Finally, this method can be used to determine the properties of a structure such as natural frequency, mode shapes, damping ration and stiffness, respectively.展开更多
Doped micro-crystalline silicon films are deposited at temperatures as low as 400 ℃ by the catalytic chemical vapor deposition method using a silane and hydrogen gas mixture. Electrical properties such as the carrier...Doped micro-crystalline silicon films are deposited at temperatures as low as 400 ℃ by the catalytic chemical vapor deposition method using a silane and hydrogen gas mixture. Electrical properties such as the carrier concentration and the Hall mobility are investigated for various measuring temperatures. It is found that the grains of micro-crystalline silicon are preferentially oriented along the (220) direction , and that the Hall mobility is larger than 8 cm 2·V -1 ·s -1 , the carrier concentration is about 1×10 17 cm -1 ~1×10 19 cm -3 at room temperature.展开更多
While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drasti...While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)展开更多
For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivi...For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivity and harm to ITO due to the acidic PSS.Herein,a simple method is introduced to enhance the conductivity and remove the additional PSS by water rinsing the PEDOT:PSS films.The photovoltaic devices based on the water rinsed PEDOT:PSS present a dramatic improvement in efficiency from 15.98%to 16.75%in comparison to that of the untreated counterparts.Systematic characterization and analysis reveal that although part of the PEDOT:PSS is washed away,it still leaves a smoother film and the ratio of PEDOT to PSS is higher than before in the remaining films.It can greatly improve the conductivity and reduce the damage to substrates.This study demonstrates that finely modifying the charge transport materials to improve conductivity and reduce defeats has great potential for boosting the efficiency of OSCs.展开更多
Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible gra...Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible graphdiyne oxide(GDYO)with a large number of functional groups,we fabricated organic solar cells employing GDYO-modified poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)(PEDOT:PSS)as hole transport materials.Results show that theπ±πinteraction between GDYO and PEDOT:PSS is beneficial to the formation of an optimized charge carrier transfer channel and improves the conductivity and charge carrier mobility in the hole transport layer.Moreover,the improved interfacial contact contributes to the suppression of charge carrier recombination and the elevation of charge carrier extraction between the hole transport layer and the active layer.More importantly,the occurrence of charge carrier separation benefits from the optimized morphology of the active layer,which efficiently improves the performance,as proven by the results of transient absorption measurements.Therefore,with the holistic management approach to the multiobjective optimization of the charge carrier dynamics,a photoelectric conversion efficiency of 17.5%(with the certified value of 17.2%)is obtained for binary organic solar cells.All of these results indicate the potential application of the functionalized graphdiyne in the field of organic optoelectronic devices.展开更多
The quantum-dot light-emitting diodes(QLEDs)that emit near-infrared(NIR)light may be important optoelectronic synaptic devices for the realization of artificial neural networks with complete optoelectronic integration...The quantum-dot light-emitting diodes(QLEDs)that emit near-infrared(NIR)light may be important optoelectronic synaptic devices for the realization of artificial neural networks with complete optoelectronic integration.To improve the performance of NIR QLEDs,we take advantage of their low-energy light emission to explore the use of poly(3-hexylthiophene)(P3 HT)as the hole transport layer(HTL).P3 HT has one of the highest hole mobilities among organic semiconductors and essentially does not absorb NIR light.The usage of P3 HT as the HTL indeed significantly mitigates the imbalance of carrier injection in NIR QLEDs.With the additional incorporation of an interlayer of poly[9,9-bis(3’-(N,N-dimethylamino)propyl)-2,7-flourene]-alt-2,7-(9,9-dioctylfluorene)],P3 HT obviously improves the performance of NIR QLEDs.As electroluminescent synaptic devices,these NIR QLEDs exhibit important synaptic functionalities such as short-and long-term plasticity,and may be employed for image recognition.展开更多
We investigate the effect of phase shift on the perfect state transfer through two parallel one-dimensional ring-shaped spin chains. We find that the total success probability can be significantly enhanced by phase sh...We investigate the effect of phase shift on the perfect state transfer through two parallel one-dimensional ring-shaped spin chains. We find that the total success probability can be significantly enhanced by phase shift control when the communication channel consists of two odd chains. The average time to gain unit success probability is discussed, showing that a proper phase shift can be used to enhance the efficiency of state transmission.展开更多
基金supported by 973 Program (2008CB425803)the National Natural Science Foundation of China (Grant No. 50979064)
文摘Dambreak-induced bed scouring may undermine the foundation of bridge piers and other structures,and that destruction can pose a serious threat.Consequently,this paper aims at exploring the mechanisms of scouring and armoring.Firstly,the incipient velocity for nonuniform sediment particles was studied,and a formula was derived based on the angle of repose of nonuniform sediment.The results showed that the mechanism of incipient motion for sand and fine gravel differed from that for coarse gravel and cobbles.Also,comparison between experimental and field data shows that the results from the proposed formula agree well with those observed for all conditions.Secondly,a birth-death,immigration-emigration Markov process was developed to describe the bed load transport rate associated with scouring and armoring.The comparison between experimental data and computed results shows that our model can predict the bed load transport rate,although there may be some limitations,the chief of which is that there are many variables in the model to be determined through experiment.This makes its application in river engineering inconvenient.
文摘[Objective] The aim was to resolve the problem of low transportation efficiency of seedlings,vulnerability of seedling trays and difficulty of recycling.[Method]Naked seedlings were transported with trays and frames to improve transportation and transplanting efficiency.[Result] The transportation of naked seedlings would effectively reduce transportation cost and improve transportation and transplanting efficiency of tobacco seedlings.[Conclusion] The transportation of naked seedlings is suitable to be applied in the region with professional transplanting.
文摘Mosul dam is the biggest hydraulic structure in Iraq located on the River Tigris 60 km northwest of Mosul city. Its storage capacity is 11. 11 × 109 m3 and it had been in operation since 1986. A physical distorted model with movable bed having a vertical scale 1: 100 and a horizontal scale 1:1000 was used to conduct the experiments relating the water level at the reservoir and water discharge upstream the reservoir with the bed load transport rate. The model represents the first 15 km of most northern part of Mosul dam reservoir. The construction of the model was based on bathymetric survey conducted in 2009. Twenty-four experiments were executed using four different discharges (0.5, 1.0, 1.5, and 2.0 L/s) which represent the average discharges in the flood period of River Tigris. At each individual discharge six operations were assumed where the reservoir's water level was 305, 307, 309, 310, 312, 315 meters above sea level respectively. In all the experiments conducted, bedload transport was measured in the physical model at section representing the River Tigris 1 km upstream the reservoir. The results showed that the bedload rate was decreasing when the water level within the reservoir was increasing. It was also evident that bedload transport rate dramatically decreased at level 310 meters above sea level onward. This is due to the fact that at this level represent the effect of backwater which was noticeable on the river cross section
文摘Fast growth of mobile internet and internet-of-things has propelled the concept formation and research on 5G wireless communications systems which are to be standardized around 2020(IMT-2020).There will be diverse application scenarios expected for 5G networks.Hence,key performance indicators(KPIs) of 5G systems would be very diverse,not just the peak data rate and average/edge spectral efficiency requirements as in previous generations.For each typical scenario,multiple technologies may be used independently or jointly to improve the transmission efficiency,to lower the cost,and to increase the number of connections,etc.Key enabling technologies are discussed which include massive MIMO,ultradense deployment specific techniques,nonorthogonal transmission,high frequency communications,etc.
文摘Experiments were conducted using cohesionless sand particles with median diameter of 0.48 mm to investigate the time variation of sediment transport rate under the influence of local downward seepage.The experimental results show that the bedload transport rate in terms of volumetric sediment transport rate per unit width increased rapidly with time in the presence of suction,eventually reaching a peak beyond which it started to decrease.The trend of reduction was significantly reduced beyond 8 400 s after the test started.The analytical expression was derived in terms of dimensionless sediment transport rate and dimensionless time.The hypothesized relationships were compared with the experimental data,indicating a good agreement with each other.
基金Supported by National Natural Science Foundation of China(No.90604013)Natural Science Foundation of Tianjin(No.08JCYBJC14200)National High Technology Research and Development Program("863"Program)of China(No.2007AA01Z220)
文摘Since most ad hoc mobile devices today operate on batteries,the power consumption becomes an important issue.This paper proposes a cross-layer design of energy-aware ad hoc on-demand distance vector(CEAODV) routing protocol which adopts cross-layer mechanism and energy-aware metric to improve AODV routing protocol to reduce the energy consumption and then prolong the life of the whole network.In CEAODV,the link layer and the routing layer work together to choose the optimized transmission power for nodes and the route for packets.The link layer provides the energy consumption information for the routing layer and the routing layer chooses route accordingly and conversely controls the link layer to adjust the transmission power.The simulation result shows that CEAODV can outperform AODV to save more energy.It can reduce the consumed energy by about 8%over traditional energy-aware algorithm.And the performance is better when the traffic load is higher in the network.
基金the National Natural Science Foundation of China (No. 60272009, No. 60572090, No. 60472045, No. 60496313 and No. 60602009).
文摘The problem of estimating the carrier frequency offsets in Multiple-Input Multiple-Output (MIMO) systems with distributed transmit antennas is addressed. It is supposed that the transmit antennas are distributed while the receive antennas are still centralized, and the general case where both the time delays and the frequency offsets are possibly different for each transmit antenna is considered. The channel is supposed to be frequency flat, and the macroscopic fading is also taken into consideration. A carrier frequency offset estimator based on Maximum Likelihood (ML) is proposed, which can separately estimate the frequency offset for each transmit antenna and exploit the spatial diversity. The Cramer-Rao Bound (CRB) for synchronous MIMO (i.e., the time delays for each transmit antenna are all equal) is also derived. Simulation results are given to illustrate the per- formance of the estimator and compare it with the CRB. It is shown that the estimator can provide satisfactory frequency offset estimates and its performance is close to the CRB for the Signal-to-Noise Ratio (SNR) below 20dB.
文摘This paper studies the relationship between mobility, navigation and localization in the context of wireless sensor networks with mobile beacons. It is observed that mobility can aid in network node localization and that once localized, the network nodes can localize and track a mobile object and guide its navigation. A distributed kernel-based algorithm is proposed that enables the nodes to establish confident position estimates in the presence of ranging inaccuracies. The proposed approach features robustness with respect to range measurement inaccuracies, low complexity and distributed implementation, using only local information. Simulation validates our approach viable.
基金sponsored by National Natural Science Foundation of China (No.91538104,No.91438205)China Postdoctoral Science Foundation (No.2011M500664)
文摘In order to investigate the benefit of multiple-input multiple-output(MIMO) technique applying to the high altitude platform(HAP), a 2×2 MIMO statistical model, which can accurately describe the channel between HAP and high-speed train, is presented. And dual polarization diversity is particularly considered. Based on first-order three-state Markov chain, the single-input single-output(SISO) channel, a subset of the MIMO channel is first established. The ray tracing approach applied to the digital relief model(DRM) which covers the railway between Xi'an and Zhengzhou is used to obtain the state probability vector and matrix of the state transition probability. The proposed model considers both Doppler shift and temporal correlation, and the polarization correlation and spatial correlation statistical properties of large-scale fading and smallscale fading are analyzed. Moreover, useful numerical results on the MIMO HAP channel outage capacity are provided based on which, significant capacity gains with respect to the conventional SISO case are illustrated. Such statistical channel model can be applied to the future wireless communication system between HAP and high-speed train.
文摘This paper aims to present the experimental result obtained from dynamic response on flee-flee beam in driving point and transfer mobility analysis using impact test method using hammer tips that are steel, plastic and rubber. The 8630C accelerometer and analyzer is used for data logging and for the analysis, the plastic hammer tip is chosen. The analytical and the experimental value then are compared for the free-free beam natural frequency, damping ratio, and stiffness value. As a result, the highest percentage error for natural frequency is approximated to 2.7%, the damping ratio is approximated to 3.115 × 10^-3 and the stiffness value gives the major different between the experiment value and theoretical value. Finally, this method can be used to determine the properties of a structure such as natural frequency, mode shapes, damping ration and stiffness, respectively.
基金The National Science Foundation of China under Grant
文摘Doped micro-crystalline silicon films are deposited at temperatures as low as 400 ℃ by the catalytic chemical vapor deposition method using a silane and hydrogen gas mixture. Electrical properties such as the carrier concentration and the Hall mobility are investigated for various measuring temperatures. It is found that the grains of micro-crystalline silicon are preferentially oriented along the (220) direction , and that the Hall mobility is larger than 8 cm 2·V -1 ·s -1 , the carrier concentration is about 1×10 17 cm -1 ~1×10 19 cm -3 at room temperature.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 863 project No.2014AA01A701+4 种基金Program for New Century Excellent Talents in University(NECT12-0774)the open research fund of National Mobile Communications Research Laboratory Southeast University(No.2013D12)Fundamental Research Funds for the Central Universities(FRF-BD-15-012A)the Research Foundation of China Mobilethe Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)
基金mostly supported by the National Key Research and Development Program of China(2017YFA0206600)the Key Research Program of Frontier Science,Chinese Academy of Sciences(QYZDB-SSW-SLH006)+1 种基金the National Natural Science Foundation of China(61674141,51972300,21975245)the support from the Hundred Talents Program(Chinese Academy of Sciences)。
文摘For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivity and harm to ITO due to the acidic PSS.Herein,a simple method is introduced to enhance the conductivity and remove the additional PSS by water rinsing the PEDOT:PSS films.The photovoltaic devices based on the water rinsed PEDOT:PSS present a dramatic improvement in efficiency from 15.98%to 16.75%in comparison to that of the untreated counterparts.Systematic characterization and analysis reveal that although part of the PEDOT:PSS is washed away,it still leaves a smoother film and the ratio of PEDOT to PSS is higher than before in the remaining films.It can greatly improve the conductivity and reduce the damage to substrates.This study demonstrates that finely modifying the charge transport materials to improve conductivity and reduce defeats has great potential for boosting the efficiency of OSCs.
基金supported by the National Natural Science Foundation of China(21975273,21801014,21773012,and U2032112)Shandong Provincial Natural Science Foundation(ZR2021QE191)+3 种基金the Scientific Research Starting Foundation of Outstanding Young Scholar of Shandong Universitythe Future Young Scholars Program of Shandong Universitythe Fundamental Research Funds of Shandong Universitysupported by the Analysis&Testing Center of Beijing Institute of Technology。
文摘Interfacial engineering for the regulation of the charge carrier dynamics in solar cells is a critical factor in the fabrication of high-efficiency devices.Based on the successful preparation of highly dispersible graphdiyne oxide(GDYO)with a large number of functional groups,we fabricated organic solar cells employing GDYO-modified poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate)(PEDOT:PSS)as hole transport materials.Results show that theπ±πinteraction between GDYO and PEDOT:PSS is beneficial to the formation of an optimized charge carrier transfer channel and improves the conductivity and charge carrier mobility in the hole transport layer.Moreover,the improved interfacial contact contributes to the suppression of charge carrier recombination and the elevation of charge carrier extraction between the hole transport layer and the active layer.More importantly,the occurrence of charge carrier separation benefits from the optimized morphology of the active layer,which efficiently improves the performance,as proven by the results of transient absorption measurements.Therefore,with the holistic management approach to the multiobjective optimization of the charge carrier dynamics,a photoelectric conversion efficiency of 17.5%(with the certified value of 17.2%)is obtained for binary organic solar cells.All of these results indicate the potential application of the functionalized graphdiyne in the field of organic optoelectronic devices.
基金mainly supported by the National Key Research and Development Program of China(2017YFA0205700)the National Natural Science Foundation of China(NSFC,61774133 and 6147409)Partial support from the NSFC for Innovative Research Groups(61721005)
文摘The quantum-dot light-emitting diodes(QLEDs)that emit near-infrared(NIR)light may be important optoelectronic synaptic devices for the realization of artificial neural networks with complete optoelectronic integration.To improve the performance of NIR QLEDs,we take advantage of their low-energy light emission to explore the use of poly(3-hexylthiophene)(P3 HT)as the hole transport layer(HTL).P3 HT has one of the highest hole mobilities among organic semiconductors and essentially does not absorb NIR light.The usage of P3 HT as the HTL indeed significantly mitigates the imbalance of carrier injection in NIR QLEDs.With the additional incorporation of an interlayer of poly[9,9-bis(3’-(N,N-dimethylamino)propyl)-2,7-flourene]-alt-2,7-(9,9-dioctylfluorene)],P3 HT obviously improves the performance of NIR QLEDs.As electroluminescent synaptic devices,these NIR QLEDs exhibit important synaptic functionalities such as short-and long-term plasticity,and may be employed for image recognition.
基金Supported by National Natural Science Foundation of China under Grant Nos.11005099,60677044the Fundamental Research Funds for the Central Universities under Grant No.201013037
文摘We investigate the effect of phase shift on the perfect state transfer through two parallel one-dimensional ring-shaped spin chains. We find that the total success probability can be significantly enhanced by phase shift control when the communication channel consists of two odd chains. The average time to gain unit success probability is discussed, showing that a proper phase shift can be used to enhance the efficiency of state transmission.