To cope with the constraint problem of power consumption and transmission delay in the virtual backbone of wireless sensor network, a distributed connected dominating set (CDS) algorithm with (α,β)-constraints i...To cope with the constraint problem of power consumption and transmission delay in the virtual backbone of wireless sensor network, a distributed connected dominating set (CDS) algorithm with (α,β)-constraints is proposed. Based on the (α, β)-tree concept, a new connected dominating tree with bounded transmission delay problem(CDTT) is defined and a corresponding algorithm is designed to construct a CDT-tree which can trade off limited total power and bounded transmission delay from source to destination nodes. The CDT algorithm consists of two phases: The first phase constructs a maximum independent set(MIS)in a unit disk graph model. The second phase estimates the distance and calculates the transmission power to construct a spanning tree in an undirected graph with different weights for MST and SPF, respectively. The theoretical analysis and simulation results show that the CDT algorithm gives a correct solution to the CDTF problem and forms a virtual backbone with( α,β)-constraints balancing the requirements of power consumption and transmission delay.展开更多
基金Major Program of the National Natural Science Foundation of China (No.70533050)High Technology Research Program ofJiangsu Province(No.BG2007012)+1 种基金China Postdoctoral Science Foundation(No.20070411065)Science Foundation of China University of Mining andTechnology(No.OC080303)
文摘To cope with the constraint problem of power consumption and transmission delay in the virtual backbone of wireless sensor network, a distributed connected dominating set (CDS) algorithm with (α,β)-constraints is proposed. Based on the (α, β)-tree concept, a new connected dominating tree with bounded transmission delay problem(CDTT) is defined and a corresponding algorithm is designed to construct a CDT-tree which can trade off limited total power and bounded transmission delay from source to destination nodes. The CDT algorithm consists of two phases: The first phase constructs a maximum independent set(MIS)in a unit disk graph model. The second phase estimates the distance and calculates the transmission power to construct a spanning tree in an undirected graph with different weights for MST and SPF, respectively. The theoretical analysis and simulation results show that the CDT algorithm gives a correct solution to the CDTF problem and forms a virtual backbone with( α,β)-constraints balancing the requirements of power consumption and transmission delay.