期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
基于部分重构辛几何模态分解的光伏直流电能质量去噪
1
作者 朱宪宇 熊婕 +3 位作者 刘良江 李庆先 左从瑞 刘青 《电气应用》 2024年第6期95-102,共8页
光伏直流系统中纹波、突变和噪声等扰动影响电能质量评估准确度,为克服传统辛几何模态分解(SGMD)存在计算效率随着数据量增加迅速降低以及重构时无效辛几何初始单分量影响分解准确性的问题,提出了基于部分重构辛几何模态分解(PRSGMD)的... 光伏直流系统中纹波、突变和噪声等扰动影响电能质量评估准确度,为克服传统辛几何模态分解(SGMD)存在计算效率随着数据量增加迅速降低以及重构时无效辛几何初始单分量影响分解准确性的问题,提出了基于部分重构辛几何模态分解(PRSGMD)的光伏直流电能信号去噪方法。PRSGMD利用复合多尺度模糊熵(CMFE)能够克服光伏直流电信号初始单分量相似性度量突变的不足,构建了正则化复合多尺度模糊熵(RCMFE)算子,评估各初始单分量重构后的复杂度并约束残余量能量最小,结合部分重构阈值指标筛选出部分显著初始单分量进行重构,从而有效提升分解效率并避免微弱无效初始单分量影响分解准确度。仿真和实验分析结果表明,PRSGMD能有效滤除噪声并分离光伏直流电信号中的复合扰动。 展开更多
关键词 光伏 直流电能 复合扰动 部分重构辛几何模态分解 正则化复合多尺度模糊熵
下载PDF
自适应辛几何模态分解和短时能量差分因子在电能质量扰动检测中的应用 被引量:8
2
作者 李云峰 高云鹏 +2 位作者 蔡星月 朱彦卿 吴聪 《电工技术学报》 EI CSCD 北大核心 2022年第17期4390-4400,共11页
针对电网中电能质量扰动信号在强噪声环境下扰动时刻难以准确检测问题,该文提出一种基于自适应辛几何模态分解(SGMD)和短时能量差分因子的电能质量扰动检测算法。基于自适应SGMD改进传统SGMD的滤波重构环节,准确重构电能质量扰动信号,... 针对电网中电能质量扰动信号在强噪声环境下扰动时刻难以准确检测问题,该文提出一种基于自适应辛几何模态分解(SGMD)和短时能量差分因子的电能质量扰动检测算法。基于自适应SGMD改进传统SGMD的滤波重构环节,准确重构电能质量扰动信号,计算重构信号的短时能量,推导基于短时能量的无参自适应阈值算式,构建短时能量差分因子,据此开发基于虚拟仪器的电能质量扰动检测平台,以实现电能质量扰动准确实时检测。仿真和实测结果表明,该文提出的算法在噪声环境下对单一扰动、复合扰动与过零扰动,均能有效地检测扰动起止时刻,且能有效地克服扰动幅值波动对检测结果的影响,相较于现有检测算法,其测量结果更加快速准确。 展开更多
关键词 电能质量扰动 辛几何模态分解 短时能量 自适应阈值 抗噪性
下载PDF
一种基于改进辛几何模态分解的复合故障诊断方法 被引量:4
3
作者 杨宇 程健 +2 位作者 彭晓燕 潘海洋 程军圣 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第2期53-59,共7页
针对辛几何模态分解方法分析结果的不确定性,提出一种改进的辛几何模态分解方法.首先对原时间序列进行相空间变换,获得轨迹矩阵;然后通过辛几何相似变换求得特征值和对应的特征向量,并通过对角平均得到一系列的初始辛几何分量;最后采用... 针对辛几何模态分解方法分析结果的不确定性,提出一种改进的辛几何模态分解方法.首先对原时间序列进行相空间变换,获得轨迹矩阵;然后通过辛几何相似变换求得特征值和对应的特征向量,并通过对角平均得到一系列的初始辛几何分量;最后采用层次聚类方法对初始辛几何分量进行自适应重组,进而得到最终的聚类辛几何分量.实验结果表明:改进的辛几何模态分解方法可以有效地对旋转机械复合故障信号进行特征提取,提高故障诊断的准确性. 展开更多
关键词 层次聚类 改进的辛几何模态分解 故障诊断 旋转机械 信号处理
下载PDF
辛几何模态分解方法及其分解能力研究 被引量:9
4
作者 程正阳 王荣吉 潘海洋 《振动与冲击》 EI CSCD 北大核心 2020年第13期27-35,共9页
针对经验模态分解(Empirical Mode Decomposition,EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、局部特征尺度分解(Local Characteristic scale Decomposition,LCD)等方法的不足,提出了一种新的分析方法--辛... 针对经验模态分解(Empirical Mode Decomposition,EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、局部特征尺度分解(Local Characteristic scale Decomposition,LCD)等方法的不足,提出了一种新的分析方法--辛几何模态分解(Symplectic Geometry Mode Decomposition,SGMD)方法,该方法采用辛矩阵相似变换求解Hamilton矩阵的特征值,并利用其对应的特征向量重构辛几何分量(Symplectic Geometry Component,SGC),从而对复杂信号去噪的同时进行自适应分解,得到若干个SGC。通过仿真信号模型,研究了SGMD方法的分解性能、噪声鲁棒性,分析了分量信号的频率比、幅值比和初相位差对SGMD方法分解能力的影响。将SGMD方法应用于齿轮故障实验数据分析,结果表明SGMD方法能够有效地对待分解信号完成分解并剔除噪声信号。 展开更多
关键词 辛几何模态分解(sgmd) 辛矩阵相似变换 辛几何分量(SGC) 分解能力
下载PDF
辛几何模态分解和广义形态分形维数的液压泵故障诊断 被引量:12
5
作者 郑直 王宝中 +1 位作者 刘佳鑫 姜万录 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第5期724-730,共7页
针对液压泵故障诊断问题,本文提出了一种基于辛几何模态分解和广义形态分形维数相结合的方法。对实测液压泵多模态故障振动信号进行分解;基于所提出的能量选取法,重构含有丰富运行特征信息的模态分量,并将其作为数据源;基于数据源提取,... 针对液压泵故障诊断问题,本文提出了一种基于辛几何模态分解和广义形态分形维数相结合的方法。对实测液压泵多模态故障振动信号进行分解;基于所提出的能量选取法,重构含有丰富运行特征信息的模态分量,并将其作为数据源;基于数据源提取,实现对液压泵不同故障的诊断。通过对比分析仿真和实测液压泵故障振动信号的试验结果,验证了该方法可以有效地诊断液压泵不同故障。 展开更多
关键词 液压泵 故障诊断 辛几何模态分解 广义形态分形维数 模态能量 特征提取 滑靴故障 松靴故障
下载PDF
迭代辛几何模态分解的高速列车轴承故障诊断 被引量:8
6
作者 林森 靳行 王延翠 《振动工程学报》 EI CSCD 北大核心 2020年第6期1324-1331,共8页
针对传统的SGMD方法存在的端点效应抑制和分解终止约束问题,提出了一种新的信号分解算法迭代辛几何模态分解(Iteration Symplectic Geometry Mode Decomposition,ISGMD)。ISGMD在SGMD的基础上,将迭代的方法引入分解过程中,确保每个分量... 针对传统的SGMD方法存在的端点效应抑制和分解终止约束问题,提出了一种新的信号分解算法迭代辛几何模态分解(Iteration Symplectic Geometry Mode Decomposition,ISGMD)。ISGMD在SGMD的基础上,将迭代的方法引入分解过程中,确保每个分量所提取的重构轨迹信号为独立分量,并提出了新的约束条件。ISGMD可以有效地分解时间序列信号并在没有任何定义参数的情况下消除噪声,抑制模态混叠与端点效应。数值仿真信号分析结果表明,所提出方法进行时间序列分解能够准确有效地分解分析信号。应用所提方法对高速列车轴承复合故障进行诊断,并与同类方法进行比较,结果表明所提方法可以更好地对轴承复合故障进行诊断。 展开更多
关键词 故障诊断 轮对轴承 辛几何模态分解 非线性系统信号
下载PDF
改进辛几何模态分解的滚动轴承故障特征提取 被引量:2
7
作者 李加伟 张永祥 +1 位作者 刘树勇 赵磊 《机械设计与制造》 北大核心 2023年第10期81-86,89,共7页
针对滚动轴承故障冲击信号难以提取的问题,提出了一种改进辛几何模态分解(Improved Symplectic Geometry Modal Decomposition,ISGMD)滚动轴承故障特征提取方法。首先将振动信号进行辛几何模态分解,然后,利用k均值聚类的方法对分解得到... 针对滚动轴承故障冲击信号难以提取的问题,提出了一种改进辛几何模态分解(Improved Symplectic Geometry Modal Decomposition,ISGMD)滚动轴承故障特征提取方法。首先将振动信号进行辛几何模态分解,然后,利用k均值聚类的方法对分解得到的辛几何分量进行聚类,通过包络谱稀疏度指标筛选出故障特征明显的聚类辛几何分量(Cluster Symplectic Geometry Component,CSGC)并进行重构,对重构分量进行包络解调,提取出故障特征。将该方法运用到轴承故障仿真和实验信号,结果表明,这里提出的方法能够有效提取出滚动轴承故障特征。 展开更多
关键词 K均值聚类 改进辛几何模态分解 滚动轴承 故障特征提取
下载PDF
增强辛几何模态分解和自组织自编码卷积网络的电机轴承工况识别 被引量:3
8
作者 陈志刚 杜小磊 王衍学 《振动工程学报》 EI CSCD 北大核心 2022年第4期958-968,共11页
针对电机轴承振动信号特征提取与工况识别困难的问题,提出一种基于增强辛几何模态分解(ESGMD)和自组织自编码卷积网络(SOAECN)的电机轴承工况识别方法。在辛几何模态分解(SGMD)的基础上将电机轴承振动信号自适应分解为初始辛几何模态分... 针对电机轴承振动信号特征提取与工况识别困难的问题,提出一种基于增强辛几何模态分解(ESGMD)和自组织自编码卷积网络(SOAECN)的电机轴承工况识别方法。在辛几何模态分解(SGMD)的基础上将电机轴承振动信号自适应分解为初始辛几何模态分量(ISGMCs),并利用改进凝聚聚类算法对ISGMCs重新组合得到聚类辛几何模态分量(CSGMCs);提出一种综合评价指标,利用此指标筛选能反映振动信号特征的CSGMCs分量并重构;结合卷积神经网络和小波自编码器,构造自编码卷积网络(AECN),并在AECN基础上改进其损失函数且引入自组织策略,进而构造SOAECN;将重构后的振动信号输入SOAECN进行自动特征提取与工况识别。实验结果表明:ESGMD‑SOAECN方法的工况识别率达到了98.76%,自动特征提取能力和工况识别能力优于深度稀疏自动编码器、深度降噪自动编码器和深度信念网络等深度学习方法,可为电机轴承自动工况识别提供参考。 展开更多
关键词 故障诊断 轴承 工况识别 辛几何模态分解 自组织自编码卷积网络 改进凝聚聚类
下载PDF
基于滑移辛几何模态分解的行星齿轮箱故障诊断研究 被引量:2
9
作者 李茜 陈晓 +1 位作者 王军龙 刘慧玲 《机电工程》 CAS 北大核心 2022年第4期427-434,443,共9页
针对辛几何模态分解方法在分解复杂信号时的特征提取能力不足问题,提出了一种基于滑移辛几何模态分解(SSGMD)的故障诊断方法。首先,通过加窗的方式构造了滑移矩阵,以代替轨迹矩阵,增强了周期性特征提取能力;其次,对滑移矩阵进行了辛几... 针对辛几何模态分解方法在分解复杂信号时的特征提取能力不足问题,提出了一种基于滑移辛几何模态分解(SSGMD)的故障诊断方法。首先,通过加窗的方式构造了滑移矩阵,以代替轨迹矩阵,增强了周期性特征提取能力;其次,对滑移矩阵进行了辛几何相似变换,获得了其特征值,将特征值所对应的特征向量经过重构,得到了其初始单分量矩阵;然后,对初始单分量矩阵做对角平均化,得到了一系列初始辛几何分量;最后,对这一系列初始辛几何分量进行拼接重组,得到了滑移辛几何分量(SSGCs),进而完成了对信号的自适应分解。研究结果表明:通过对仿真信号和行星齿轮箱实测信号进行实验分析,可知SSGMD利用滑移矩阵和辛几何相似变换不仅可以保护原始信号结构化信息不变,而且能充分提取原始信号的状态信息;与经典的信号分解方法相比,SSGMD方法能有效地对多分量信号进行分解,具有优越的特征提取能力。 展开更多
关键词 行星齿轮箱 复杂信号分解 滑移辛几何模态分解 特征提取能力 信号自适应分解 滑移矩阵
下载PDF
基于聚类辛几何模态分解的转子故障诊断
10
作者 陈勇 刘晓波 《失效分析与预防》 2023年第3期164-172,212,共10页
辛几何模态分解(SGMD)方法利用周期相似性进行信号分量重组,且需要人为设置终止条件,这导致分解结果具有不确定性。针对这一不足,提出一种聚类辛几何模态分解(CSGMD)方法。首先将时间序列的信号转化成轨迹矩阵;其次,对轨迹矩阵进行矩阵... 辛几何模态分解(SGMD)方法利用周期相似性进行信号分量重组,且需要人为设置终止条件,这导致分解结果具有不确定性。针对这一不足,提出一种聚类辛几何模态分解(CSGMD)方法。首先将时间序列的信号转化成轨迹矩阵;其次,对轨迹矩阵进行矩阵变换,获得由多组初始单分量重构矩阵组成的重构矩阵;然后利用对角平均化方法将每一个重构矩阵转化成相应的一维时间序列初始分量;最后使用K-means聚类算法对初始分量进行重组,得到最终的辛几何分量。相比SGMD和变分模态分解(VMD)方法,该方法提取的有效分量失真程度和频率混淆程度更低,干扰分量更少,故障冲击特性提升更为明显。该方法能够有效提取出转子故障特征,提高转子故障诊断的准确性。 展开更多
关键词 辛几何模态分解 K-MEANS聚类 转子故障 信号处理
下载PDF
基于EMD和辛几何的运动员表面肌电信号分析与评价 被引量:2
11
作者 牛迅 曲峰 王宁 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期125-129,共5页
为对肌电信号的物理解释做出探索性的工作 ,本文运用经验模态分解和辛几何的方法 ,对不同等级短跑运动员腿部不同肌群的表面肌电信号进行处理分析。试验结果初步表明 ,应用上述 2种方法可对运动员等级和竞技状态做出有效的评价 ,而且 2... 为对肌电信号的物理解释做出探索性的工作 ,本文运用经验模态分解和辛几何的方法 ,对不同等级短跑运动员腿部不同肌群的表面肌电信号进行处理分析。试验结果初步表明 ,应用上述 2种方法可对运动员等级和竞技状态做出有效的评价 ,而且 2种方法对肌电信号处理结果的一致性将有助于进一步描述肌肉系统的生物力学特性。 展开更多
关键词 表面肌电信号 经验模态分解 辛几何
下载PDF
基于ISGMD-DHT的电压暂降特征提取方法研究
12
作者 郭成 代剑波 +2 位作者 杨灵睿 何觅 杨发宇 《电力系统保护与控制》 EI CSCD 北大核心 2024年第7期70-79,共10页
针对电压暂降特征信号在谐波、噪声环境下的准确提取问题,提出了一种基于迭代辛几何模态分解-差值希尔伯特变换(iteration symplectic geometry mode decomposition-difference Hilbert transform,ISGMD-DHT)的提取方法。首先,基于哈密... 针对电压暂降特征信号在谐波、噪声环境下的准确提取问题,提出了一种基于迭代辛几何模态分解-差值希尔伯特变换(iteration symplectic geometry mode decomposition-difference Hilbert transform,ISGMD-DHT)的提取方法。首先,基于哈密顿矩阵与辛QR分解构造重构轨迹矩阵,结合辛几何相似变换得到初始辛几何分量。其次,根据相似度准则拟合初始辛几何分量并计算残余分量,再根据残余分量构造轨迹矩阵。然后,重复上述操作直至满足迭代终止条件获得最终相互独立的辛几何分量。最后,通过差值希尔伯特变换提取暂降特征量。仿真和实测数据的分析结果表明,该方法能在严重噪声、谐波扰动情况下准确提取暂降特征量。 展开更多
关键词 辛几何模态分解 电压暂降 特征提取 差值希尔伯特变换 辛几何分量
下载PDF
基于SE-improved SGMD的混合储能容量优化配置方法研究
13
作者 刘禹彤 赵琳 王鑫太 《高压电器》 CAS CSCD 北大核心 2024年第10期78-85,103,共9页
采用混合储能系统平抑风电输出功率波动可有效解决风电并网问题,而不同功率分配方法对混合储能优化配置结果影响大,为此提出一种基于样本熵改进的辛几何模态分解方法(sample entropy-improved symplectic geometric mode decomposition,... 采用混合储能系统平抑风电输出功率波动可有效解决风电并网问题,而不同功率分配方法对混合储能优化配置结果影响大,为此提出一种基于样本熵改进的辛几何模态分解方法(sample entropy-improved symplectic geometric mode decomposition,SE-improved SGMD)的混合储能系统功率分配策略。首先,采用SGMD对不平衡功率进行分解,获取一系列辛几何分量SGC(symplectic geometry component);然后,计算分解后各SGC的样本熵SE(sample entropy)并获取其相似度阈值,以此为依据将分解后的子分量重构高、低频分量,分别作为超级电容和全钒液流电池的参考功率;进而,通过计及储能设备SOC限幅约束和充放电效率约束对两种储能设备的额定功率和容量进行配置;最后,结合中国某风电场实测输出数据,构建基于全寿命周期成本的经济性评估模型,验证文中方法的有效性与实用性。 展开更多
关键词 混合储能 辛几何模态分解 样本熵 SOC限幅约束 全寿命周期成本
下载PDF
基于PRSGMD-XGBoost的光伏直流电能质量扰动识别
14
作者 朱宪宇 熊婕 +3 位作者 李庆先 刘良江 左从瑞 刘青 《电工电气》 2024年第7期61-67,共7页
光伏电网受天气因素和非线性负载等影响,直流电信号中存在的扰动成分使得电能质量评估的准确性难以保障。利用复合多尺度模糊熵可克服光伏直流电信号初始单分量相似性度量突变的问题,构建了正则化CMFE算子评估各初始单分量重构后的复杂... 光伏电网受天气因素和非线性负载等影响,直流电信号中存在的扰动成分使得电能质量评估的准确性难以保障。利用复合多尺度模糊熵可克服光伏直流电信号初始单分量相似性度量突变的问题,构建了正则化CMFE算子评估各初始单分量重构后的复杂度并约束残余量能量最小,从而实现电信号和噪声等扰动的准确分离,在此基础上,提出了基于部分重构辛几何模态分解(PRSGMD)的光伏直流电信号自适应去噪方法,结合极限梯度提升机(XGBoost)可有效挖掘特征与暂态稳定性之间关系的优势,实现了光伏直流电信号中复合扰动的分离和识别。 展开更多
关键词 光伏 电能质量扰动识别 部分重构辛几何模态分解 极限梯度提升机
下载PDF
基于SGMD及LWOA-ELM的有限元模型修正
15
作者 赵宇 彭珍瑞 《计算力学学报》 CAS CSCD 北大核心 2023年第2期255-263,共9页
为得到待修正参数与结构响应之间的关系,提高模型修正的效率和精度,提出了一种基于辛几何模态分解(SGMD)和Lévy飞行鲸鱼优化算法(LWOA)优化极限学习机(ELM)的有限元模型修正(FEMU)方法。首先,对加速度频响函数(AFRF)进行SGMD分解,... 为得到待修正参数与结构响应之间的关系,提高模型修正的效率和精度,提出了一种基于辛几何模态分解(SGMD)和Lévy飞行鲸鱼优化算法(LWOA)优化极限学习机(ELM)的有限元模型修正(FEMU)方法。首先,对加速度频响函数(AFRF)进行SGMD分解,采用能量熵增量法确定重组辛几何分量(SGC)构成SGC矩阵。然后,利用LWOA对ELM的权值和阈值进行优化,提高ELM模型的预测效率,以LWOA-ELM为代理模型映射出待修正参数与SGC矩阵之间的关系。最后,以试验频响函数SGC矩阵与LWOA-ELM模型输出所得矩阵差值的F-范数最小为目标函数,结合LWOA求解待修正参数。算例分析表明,提出的方法用于有限元模型修正有较好的可行性和有效性。以SGC矩阵表征AFRF的修正方法,有较好的噪声鲁棒性;LWOA-ELM作为代理模型预测精度高,泛化能力强。 展开更多
关键词 模型修正 辛几何模态分解 能量熵增量法 极限学习机 鲸鱼优化算法
下载PDF
基于SGMD敏感参数和KFCMC的滚动轴承故障诊断方法 被引量:2
16
作者 郑直 高崇一 +1 位作者 宋金超 姜万录 《机床与液压》 北大核心 2020年第11期189-193,206,共6页
针对滚动轴承的内圈和外圈故障诊断问题,提出了一种基于辛几何模态分解(SGMD)、敏感参数和核模糊C均值聚类(KFCMC)相结合的方法。基于SGMD研究了实际测量的液压泵多模态故障振动信号;基于所提出的相似性分析法,将含有丰富运行特征信息... 针对滚动轴承的内圈和外圈故障诊断问题,提出了一种基于辛几何模态分解(SGMD)、敏感参数和核模糊C均值聚类(KFCMC)相结合的方法。基于SGMD研究了实际测量的液压泵多模态故障振动信号;基于所提出的相似性分析法,将含有丰富运行特征信息的模态分量进行重构,并将其作为数据源;基于数据源提取时域和频域参数,并利用流行学习法筛选出峭度、裕度指标和峰值指标等敏感参数作为特征向量;利用KFCMC实现对内圈和外圈不同故障的诊断。通过对滚动轴承内、外圈故障振动信号的仿真和实测,验证了该方法可以有效地诊断滚动轴承不同故障。 展开更多
关键词 辛几何模态分解 滚动轴承 故障诊断 敏感参数
下载PDF
基于ISGMD和MED的齿轮箱早期故障特征提取 被引量:2
17
作者 董书洲 秦训鹏 杨世明 《机械传动》 北大核心 2022年第3期154-162,共9页
针对在强噪声背景下难以识别齿轮箱早期故障以及复合故障的问题,提出了一种改进辛几何模态分解(Improved symplectic geometry mode decomposition,ISGMD)和最小熵解卷积(Minimum entropy deconvolution,MED)相结合的故障特征提取方法... 针对在强噪声背景下难以识别齿轮箱早期故障以及复合故障的问题,提出了一种改进辛几何模态分解(Improved symplectic geometry mode decomposition,ISGMD)和最小熵解卷积(Minimum entropy deconvolution,MED)相结合的故障特征提取方法。首先,将信号经最小熵解卷积预处理,突出信号中的故障冲击成分;然后,将故障增强信号通过改进辛几何模态分解自适应地分解为若干辛几何分量,并依据峭度最大准则选取峭度值最大的敏感辛几何分量;最后,对选定的敏感辛几何分量进行包络分析,从而有效地提取出齿轮箱的故障特征。通过实验,验证了该方法的有效性。 展开更多
关键词 齿轮箱 辛几何模态分解 最小熵解卷积 早期故障 特征提取
下载PDF
全矢与SGMD-FastICA的轴承故障诊断 被引量:1
18
作者 曹亚磊 杜应军 +2 位作者 韦广 董辛旻 刘洋 《组合机床与自动化加工技术》 北大核心 2022年第4期79-82,87,共5页
针对滚动轴承故障诊断中存在的故障信号特征不全面且易被噪声污染等问题,基于全矢和辛几何模态分解(SGMD),提出了全矢与SGMD-FastICA方法。首先,使用SGMD对水平方向X和竖直方向Y的故障信号进行分解,并通过综合指标将分解信号分为故障重... 针对滚动轴承故障诊断中存在的故障信号特征不全面且易被噪声污染等问题,基于全矢和辛几何模态分解(SGMD),提出了全矢与SGMD-FastICA方法。首先,使用SGMD对水平方向X和竖直方向Y的故障信号进行分解,并通过综合指标将分解信号分为故障重构信号和噪声重组信号;其次,通过FastICA实现对故障重构信号与噪声重组信号的盲源分离;最后,利用全失谱技术对水平方向和竖直方向的盲源分离的有效分量进行融合,并使用Teager能量算子(TEO)对全矢融合信号进行解调分析。通过对滚动轴承振动信号的实验和对比分析,验证了所提方法的优越性和可靠性,在滚动轴承故障诊断领域具有一定的实用价值。 展开更多
关键词 故障诊断 滚动轴承 辛几何模态分解 全失谱
下载PDF
基于SGMD-Autogram的液压泵故障诊断方法研究 被引量:11
19
作者 郑直 李显泽 +1 位作者 朱勇 王宝中 《振动与冲击》 EI CSCD 北大核心 2020年第23期234-241,共8页
辛几何模态分解方法(Symplectic Geometry Mode Decomposition,SGMD)存在特征信息分布过于分散问题、Autogram方法中的最大重复离散小波变换(Maximal Overlap Discrete Wavelet Packet Transform,MODWPT)存在特征提取能力不足问题,针对... 辛几何模态分解方法(Symplectic Geometry Mode Decomposition,SGMD)存在特征信息分布过于分散问题、Autogram方法中的最大重复离散小波变换(Maximal Overlap Discrete Wavelet Packet Transform,MODWPT)存在特征提取能力不足问题,针对上述两问题,提出了基于SGMD-Autogram的新方法。对实测液压泵多模态故障振动信号进行SGMD分解;针对分解后产生的特征信息分布过于分散问题,提出基于最大无偏自相关谱峭度法,筛选含有丰富运行特征信息的模态分量为数据源,进而取代MODWPT,实现最优故障特征提取;对数据源进行阈值处理,并基于频谱实现对液压泵故障的诊断。通过对比分析仿真和实测液压泵斜盘故障振动信号,验证了该方法可以有效地诊断斜盘故障。 展开更多
关键词 液压泵 故障诊断 辛几何模态分解 Autogram
下载PDF
基于SGMD线性峭度和log-SAM的滚动轴承故障诊断方法 被引量:4
20
作者 李显泽 龙海洋 +3 位作者 郑直 韩炬 吴萍萍 赵树忠 《噪声与振动控制》 CSCD 2020年第6期121-127,共7页
对数-频谱振幅调制(log-SAM)方法容易受到强噪声影响,基于辛几何模态分解(SGMD)方法所得分解结果中故障特征信息分散,传统峭度也容易受噪声中的随机冲击干扰。针对上述问题,提出一种基于SGMD、线性峭度和log-SAM相结合的新方法。首先,... 对数-频谱振幅调制(log-SAM)方法容易受到强噪声影响,基于辛几何模态分解(SGMD)方法所得分解结果中故障特征信息分散,传统峭度也容易受噪声中的随机冲击干扰。针对上述问题,提出一种基于SGMD、线性峭度和log-SAM相结合的新方法。首先,对滚动轴承振动信号进行SGMD分解,得到众多分量;其次,基于最大线性峭度,筛选具有丰富特征信息的分量作为数据源;最后,对数据源进行log-SAM分析,实现最优故障诊断。通过分析滚动轴承仿真信号和实测滚动轴承内圈故障信号,证实所提方法具有更好的抑噪能力和诊断效果。 展开更多
关键词 故障诊断 滚动轴承 辛几何模态分解 log-SAM 线性峭度
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部